精英家教网 > 高中数学 > 题目详情
如图,A是单位圆与x轴正半轴的交点,点B、P在单位圆上,且
(Ⅰ)求的值;
(Ⅱ)令∠AOP=θ(0<θ<π),,四边形OAQP的面积为S,,求f(θ)的最大值及此时θ的值.

【答案】分析:(I)由∠AOB=α可得α的终边与单位圆交于点B(-),根据三角函数的定义,可求出α的正切值,进而利用弦化切技巧可求出的值.
(Ⅱ)由条件可得OAQP为平行四边形,它的面积S=2S△AOP=sinθ,化简函数f(θ)的解析式为sin(2θ-)+1,由此根据正弦函数的定义域和值域求得f(θ)的最大值及此时θ的值.
解答:解:(I)∵∠AOB=α,∴α的终边与单位圆交于点B(-),∴tanα===-
===
(Ⅱ)∵∠AOP=θ(0<θ<π),,故四边形OAQP为平行四边形,
∴四边形OAQP的面积为S=2S△AOP=2××1×1sinθ=sinθ.
∵A(1 0),P(cosθ,sinθ),
==+=1+cosθ.
=cosθ•sinθ+sin2θ=sin2θ+=sin(2θ-)+1,
∴当 sin(2θ-)=1,即 2θ-=时,即 θ=时,函数f(θ)取得最大值为
点评:本题考查的知识点是任意角的三角函数的定义,同角三角函数的基本关系,三角函数的最值,熟练掌握三角函数的定义及性质是解答的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,A是单位圆与x轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),
OQ
=
OA
+
OP
,四边形OAQP的面积为S.
(1)求
OA
OQ
+S
的最大值及此时θ的值θ0
(2)设点B的坐标为(-
3
5
4
5
)
,∠AOB=α,在(1)的条件下求cos(α+θ0).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A是单位圆与x轴正半轴的交点,B,P为单位圆上不同的点,∠AOB=θ,∠AOP=2θ,0≤θ≤π.
(Ⅰ)当θ为何值时,
AB
OP

(Ⅱ)若
OQ
=
OA
+
OB
,则当θ为何值时,点Q在单位圆上?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普宁市模拟)如图,A是单位圆与x轴正半轴的交点,点B、P在单位圆上,且B(-
3
5
4
5
)
,∠AOB=α,∠AOP=θ(0<θ<π),
OQ
=
OA
+
OP
,四边形OAQP的面积为S.
(Ⅰ)求cosα+sinα;
(Ⅱ)求
OA
OQ
+S
的最大值及此时θ的值θ0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)如图,A是单位圆与x轴正半轴的交点,点B,P在单位圆上,且B(-
3
5
4
,5
),∠AOB=α,∠AOP=θ(0<θ<π),
OQ
=
OA
+
OP
.设四边形OAQP的面积为S,
(1)求cos(α-
π
6
);
(2)求f(θ)=
OA
OQ
+S的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,A是单位圆与x轴正半轴的交点,点B、P在单位圆上,且B(-
3
5
4
5
),∠AOB=α

(Ⅰ)求
4cosα-2sinα
5cosα+3sinα
的值;
(Ⅱ)令∠AOP=θ(0<θ<π),
OQ
=
OA
+
OP
,四边形OAQP的面积为S,f(θ)=(
OA
OQ
-1)S+S2
,求f(θ)的最大值及此时θ的值.

查看答案和解析>>

同步练习册答案