精英家教网 > 高中数学 > 题目详情
已知是空间三条不同的直线,下列命题中正确的是(  )
A.如果.则
B.如果.则共面.
C.如果.则
D.如果共点.则共面.
A

试题分析:,则则 可能共面也可能不共面,如三棱柱的三条侧棱;直线的垂直不具备传递性,所以C错误;共点也可能异面,如三棱锥的三条侧棱,所以D错误,只有A正确.
点评:考查空间中直线、平面之间的位置关系,要紧扣相关的判定定理和性质定理,定理中要求的条件要缺一不可.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面.于点,中点.

(1)用空间向量证明:AM⊥MC,平面⊥平面
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面⊥平面是直角三角形,,四边形是直角梯形,其中,,且的中点,分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA平面ABCD,,BC=1,E为CD的中点,PC与平面ABCD成角。

(1)求证:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图所示,在三棱柱中,点为棱的中点.

(1)求证:.
(2)若三棱柱为直三棱柱,且各棱长均为,求异面直线所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知在四棱锥中,底面是矩形,平面的中点, 是线段上的点.

(I)当的中点时,求证:平面
(II)要使二面角的大小为,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形均为菱形, ,且

(Ⅰ)求证:平面
(Ⅱ)求证:AE∥平面FCB;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是直线,是两个不同的平面,下列选项正确的是(   )
A.若,则B.若,则
C.若,则D.若, ,则

查看答案和解析>>

同步练习册答案