精英家教网 > 高中数学 > 题目详情
经过点M(,0)作直线l,交曲线 (θ为参数)于A,B两点,若|MA|,|AB|,|MB|成等比数列,求直线l的方程.
.

试题分析:先将直线设为代入曲线C,得到关于t的方程,利用t的几何意义,利用|MA|,|AB|,|MB|成等比数列,得到,可以求出方程.
试题解析:解:根据题意,设直线l的参数方程为
 (t为参数)
曲线C化成普通方程得x2+y2=4.
代入
(+tcosθ)2+t2sin2θ=4.
化简整理得t2+2cosθt+6=0,
∴t1+t2=-2cosθ,t1t2=6.
由题意得|AB|2=|MA||MB|,
而|AB|2=(t1-t2)2=(t1+t2)2-4t1t2
|MA||MB|=|t1t2|=6,
即40cos2θ-24=6,解得cosθ=±
∴sinθ=,k=tanθ=±.
所求直线l的方程为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)选修4—4,坐标系与参数方程
已知曲线,直线为参数).
(I)写出曲线的参数方程,直线的普通方程;
(II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:
x=3cosθ
y=2sinθ
,直线l:ρ(cosθ-2sinθ)=12.
(1)将直线l的极坐标方程化为直角坐标方程;
(2)设点P在曲线C上,求P点到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

选修4-4:坐标系与参数方程
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+
π
4
)=
2
2
a,曲线C2的参数方程为
x=-1+cosφ
x=-1+sinφ
(φ为参数,0≤φ≤π),
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个不同公共点时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C.
(1)以直线AB的倾斜角为参数,求曲线C的参数方程;
(2)求点P到点D距离的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角坐标系中,曲线C1的参数方程为为参数)在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,曲线的方程为,则的交点个数为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(),直线l的极坐标方程为ρcos()=a,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为(为参数),试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将参数方程为参数,)化成普通方程为        ______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l1(t为参数)与直线l2:2x-4y=5相交于点B,又点A(1,2),求|AB|.

查看答案和解析>>

同步练习册答案