精英家教网 > 高中数学 > 题目详情

,最大值M,最小值N,则


  1. A.
    M-N=4
  2. B.
    M+N=4
  3. C.
    M-N=2
  4. D.
    M+N=2
D
试题分析:根据题意,因为

故函数关于(0,1)对称,则可知其函数最大值和最小值的和为2,故选D.
考点:三角函数的性质
点评:解决该试题的关键是对于函数解析式的化简,以及熟练的运用三角函数性质来求解最值。属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
3
2
sinπx+
1
2
cosπx
,x∈R.
(Ⅰ)求函数f(x)的最大值和最小值;
(Ⅱ)如图,函数f(x)在[-1,1]上的图象与x轴的交点从左到右分别为M、N,图象的最高点为P,求
PM
PN
的夹角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c,(a,b,c∈R且a≠0)
(1)当x=1时有最大值1,若x∈[m,n],(0<m<n)时,函数f(x)的值域为[
1
n
1
m
]
,证明:
f(m)
f(n)
=
n
m

(2)若b=4,c=-2时,对于给定正实数a有一个最小负数g(a),使得x∈[g(a),0]时,|f(x)|≤4恒成立,问a为何值时,g(a)最小,并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2+bx+c,(a,b,c∈R且a≠0)
(1)当x=1时有最大值1,若x∈[m,n],(0<m<n)时,函数f(x)的值域为[
1
n
1
m
]
,证明:
f(m)
f(n)
=
n
m

(2)若b=4,c=-2时,对于给定正实数a有一个最小负数g(a),使得x∈[g(a),0]时,|f(x)|≤4恒成立,问a为何值时,g(a)最小,并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈市浠水一中高三(下)高考交流数学试卷(理科)(解析版) 题型:解答题

已知函数,x∈R.
(Ⅰ)求函数f(x)的最大值和最小值;
(Ⅱ)如图,函数f(x)在[-1,1]上的图象与x轴的交点从左到右分别为M、N,图象的最高点为P,求的夹角的余弦.

查看答案和解析>>

同步练习册答案