精英家教网 > 高中数学 > 题目详情

已知等差数列为递增数列,满足,在等比数

(Ⅰ)求数列的通项公式

(Ⅱ)若数列的前项和为,求证:数列是等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)若有穷递增数列{bn}是“兑换系数”为a的“兑换数列”,求证:数列{bn}的前n项和Sn=
n2
•a

(3)已知有穷等差数列{cn}的项数是n0(n0≥3),所有项之和是B,试判断数列{cn}是否是“兑换数列”?如果是的,给予证明,并用n0和B表示它的“兑换系数”;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列bn的项数是n0(n0≥3),所有项之和是B,求证:数列bn是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市徐汇区高三4月学习能力诊断理科数学试卷(解析版) 题型:解答题

第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.

如果存在常数使得数列满足:若是数列中的一项,则也是数列中的一项,称数列为“兑换数列”,常数是它的“兑换系数”.

(1)若数列:是“兑换系数”为的“兑换数列”,求的值;

(2)已知有穷等差数列的项数是,所有项之和是,求证:数列是“兑换数列”,并用表示它的“兑换系数”;

(3)对于一个不少于3项,且各项皆为正整数的递增数列,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012年上海市徐汇区高三4月学习能力诊断数学试卷(理科)(解析版) 题型:解答题

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列bn的项数是n(n≥3),所有项之和是B,求证:数列bn是“兑换数列”,并用n和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.

查看答案和解析>>

同步练习册答案