精英家教网 > 高中数学 > 题目详情

一动圆P与两圆O:x2+y2=1和O1:x2+y2-8x+7=0均内切,那么动圆P圆心的轨迹是

[  ]
A.

椭圆

B.

抛物线

C.

双曲线

D.

双曲线一支

答案:D
解析:

  ∵|PO1|+3=|PO|+1,

  ∴|PO|-|PO1|=2.

  故动圆P圆心的轨迹是双曲线一支.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给定椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”.
(1)若椭圆C过点(
5
,0)
,且焦距为4,求“伴随圆”的方程;
(2)如果直线x+y=3
2
与椭圆C的“伴随圆”有且只有一个交点,那么请你画出动点Q(a,b)轨迹的大致图形;
(3)已知椭圆C的两个焦点分别是F1(-
2
,0)、F2
2
,0),椭圆C上一动点M1满足|
M1F1
|+|
M1F
2
|=2
3
.设点P是椭圆C的“伴随圆”上的动点,过点P作直线l1、l2使得l1、l2与椭圆C都各只有一个交点,且l1、l2分别交其“伴随圆”于点M、N.当P为“伴随圆”与y轴正半轴的交点时,求l1与l2的方程,并求线段|
MN
|
的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:如图,过椭圆C:
y2
a2
+
x2
b2
=1
(a>b>0)上一动点P引圆x2+y2=b2的两条切线PA,PB(A,B为切点).直线AB与x轴、y轴分别交于M、N两点.
①已知P点的坐标为(x0,y0),并且x0•y0≠0,试求直线AB的方程;    
②若椭圆的短轴长为8,并且
a2
|OM|2
+
b2
|ON|2
=
25
16
,求椭圆C的方程;
③椭圆C上是否存在P,由P向圆O所引两条切线互相垂直?若存在,求出存在的条件;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.w.w.w.k.s.5.u.c.o.m        

⑴求动圆圆心P的轨迹方程;

⑵若过点M2的直线与⑴中所求轨迹有两个交点A、B,求|AM1|?|BM1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.w.w.w.k.s.5.u.c.o.m        

⑴求动圆圆心P的轨迹方程;

⑵若过点M2的直线与⑴中所求轨迹有两个交点A、B,求|AM1|·|BM1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.w.w.w.k.s.5.u.c.o.m        

⑴求动圆圆心P的轨迹方程;

⑵若过点M2的直线与⑴中所求轨迹有两个交点A、B,求|AM1|·|BM1|的取值范围.

查看答案和解析>>

同步练习册答案