精英家教网 > 高中数学 > 题目详情
9.已知直线l:x+my+4=0,若曲线x2+y2+2x-6y+1=0上存在两点P、Q关于直线l对称,则m的值为-1.

分析 曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,说明曲线是圆,直线过圆心,易求m的值

解答 解:曲线方程为(x+1)2+(y-3)2=9表示圆心为(-1,3),半径为3的圆.
∵点P、Q在圆上且关于直线x+my+4=0对称,
∴圆心(-1,3)在直线上.代入得m=-1.
故答案为:-1.

点评 本题考查直线与圆的方程的应用,圆的一般式方程,考查函数与方程的思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.方程2x+x=2,log2x+x=2,2x=log2(-x)的根分别为a,b,c,则a,b,c的大小关系为c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线2x+2y+1=0,x+y+2=0之间的距离是$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽豪州蒙城县一中高二上月考一数学试卷(解析版) 题型:填空题

在等差数列中,,则____________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin2x+2cos2x-1.
(Ⅰ)求函数f(x)最小正周期和单调递增区间;
(Ⅱ)求函数f(x)在区间[$\frac{π}{4},\frac{3π}{4}$]上的最小值和此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,若3(a4+a6)+2(a7+a9+a11)=24,则此数列的前13项之和为(  )
A.13B.26C.52D.156

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在生产过程中,测得100件纤维产品的纤度(表示纤维粗细的一种量),将数据分组如表.
分组频数频率
[1.30,1.34)4
[1.34,1.38)25
[1.38,1.42)30
[1.42,1.46)29
[1.46,1.50)10
[1.50,1.54)2
合计100
(Ⅰ)完成频率分布表,并画出频率分布直方图;
(Ⅱ)从纤度最小、最大的6件产品中任取2件,设取出的纤度在[1.30,1.34)内的产品有ξ件,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U={x||x|≤2},A={x|x2+x-2≤0},则∁UA=(  )
A.{x|1≤x≤2}B.{x|1<x≤2}C.{x|-1≤x≤2}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{{x}^{2}-4x+13}$-$\sqrt{{x}^{2}+1}$的最大值是(  )
A.2$\sqrt{2}$B.10C.$\sqrt{10}$D.0

查看答案和解析>>

同步练习册答案