精英家教网 > 高中数学 > 题目详情
如图,圆O1与圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=PN,试建立适当的坐标系,并求动点P的轨迹方程.

思路点拨:本题是解析几何中求轨迹方程问题,按求轨迹方程问题的一般方法步骤求解即可.

解:如图,以直线O1O2为x轴,线段O1O2的垂直平分线为y轴,建立平面直角坐标系,则两圆心的坐标分别为O1(-2,0),O2(2,0).

设P(x,y),则PM2=PO12-MO12=(x+2)2+y2-1.

同理,PN2=(x-2)2+y2-1.

PM=PN,即(x+2)2+y2-1=2[(x-2)2+y2-1],

即x2-12x+y2+3=0,

即(x-6)2+y2=33.这就是动点P的轨迹方程.

[一通百通]本题是考查解析几何中求点的轨迹方程的方法应用,考查建立坐标系、数形结合思想、勾股定理、两点间距离公式等知识内容,及分析推理、计算化简技能、技巧等,是一道很综合的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,精英家教网圆O1与圆O2相交于A、B,过A作圆O1的切线交圆O2于C,连CB并延长交圆O1于D,连AD,AB=2,BD=3,BC=5,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1.圆O2的切线PM、PN(M.N分别为切点),使得PM=
2
PN.试建立适当的坐标系,并求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,圆O1与圆O2相交于A、B,过A作圆O1的切线交圆O2于C,连CB并延长交圆O1于D,连AD,AB=2,BD=3,BC=5,则AD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
x=5cosφ
y=3sinφ
(φ为参数)的右焦点,且与直线
x=4-2t
y=3-t
(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三第一次模拟考试理科数学试卷(解析版) 题型:解答题

如图,圆O1与圆O2相交于A、B两点,AB是圆O2的直径,过A点作圆O1的切线交圆O2于点E,并与BO1的延长线交于点P,PB分别与圆O1、圆O2交于C,D两点.

求证:(Ⅰ)PA·PD=PE·PC;

 (Ⅱ)AD=AE.

 

查看答案和解析>>

同步练习册答案