精英家教网 > 高中数学 > 题目详情

某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产1百件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为5百件,产品销售数量为t(百件)时,销售所得的收入为()万元。
(1)该公司这种产品的年生产量为百件,生产并销售这种产品得到的利润为当年产量的函数,求
(2)当该公司的年产量为多大时当年所获得的利润最大。

(1)(2)当该公司的年产量为475件时,当年获得的利润最大

解析试题分析:(1)当时,
时,
所以
(2)当时,
故当百件=475件时,(万元)
时,
故当该公司的年产量为475件时,当年获得的利润最大。
考点:本小题主要考查分段函数在实际问题中的应用.
点评:解决实际问题,关键是读懂题意,抽象出合适的数学模型,利用熟悉的数学知识解决问题,还要注意实际问题本身的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示)

(1)试将表示为的函数;
(2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求不等式的解集; (2)若的解集包含,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数,满足,且方程有两个相等的实根.
(1)求函数的解析式;
(2)当时,求函数的最小值的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义域为R上的奇函数.
(1)求的值,并证明当时,函数是R上的增函数;
(2)已知,函数,求的值域;
(3)若,试问是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,且当时,
(1)写出函数的解析式;
(2)若函数,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒。
(1)试把方盒的容积表示为的函数;
(2)多大时,方盒的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用平均建筑费用平均购地费用,平均购地费用

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?

查看答案和解析>>

同步练习册答案