精英家教网 > 高中数学 > 题目详情

已知二次函数,满足,且方程有两个相等的实根.
(1)求函数的解析式;
(2)当时,求函数的最小值的表达式.

(1)(2)

解析试题分析:解:(1)由,得:对称轴,    2分
由方程有两个相等的实根可得:
解得
∴ .    4分
(2)
①当,即时,;   6分
②当,即时,;    8分
③当时,;    10分
综上:.      12分
考点:二次函数的解析式以及最值
点评:主要是考查了二次函数的解析式的求解,以及函数的最值讨论,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

计算: 1)   ;
2)设,求
3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升6元,而汽车每小时耗油升,司机的工资是每小时30元.
(1)求这次行车总费用关于的表达式;
(2)当为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中把草坪分成面积相等的两部分,上,上.

(1)设,求用表示的函数关系式;
(2)如果是灌溉水管,为节约成本,希望它最短,的位置应在哪里?如果是参观线路,则希望它最长,的位置又应在哪里?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2013年,首都北京经历了59年来雾霾天气最多的一个月。经气象局统计,北京市从1月1日至1月30日这30天里有26天出现雾霾天气。《环境空气质量指数(AQI)技术规定(试行)》将空气质量指数分为六级:其中,中度污染(四级),指数为151—200;重度污染(五级),指数为201—300;严重污染(六级),指数大于300. 下面表1是该观测点记录的4天里,AQI指数与当天的空气水平可见度(千米)的情况,表2是某气象观测点记录的北京1月1日到1月30日AQI指数频数统计结果,
表1:AQI指数与当天的空气水平可见度(千米)情况

AQI指数




空气可见度(千米)




表2:北京1月1日到1月30日AQI指数频数统计
AQI指数





频数
3
6
12
6
3
(Ⅰ)设变量,根据表1的数据,求出关于的线性回归方程;
(Ⅱ)根据表2估计这30天AQI指数的平均值.
(用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业在第1年初购买一台价值为120万元的设备MM的价值在使用过程中逐年减少.从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.
(1)求第n年初M的价值an的表达式;
(2)求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产1百件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为5百件,产品销售数量为t(百件)时,销售所得的收入为()万元。
(1)该公司这种产品的年生产量为百件,生产并销售这种产品得到的利润为当年产量的函数,求
(2)当该公司的年产量为多大时当年所获得的利润最大。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某房地产开发商投资81万元建一座写字楼,第一年维修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元。(1)n年利润是多少?第几年该楼年平均利润最大?最大是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在时取得极值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数m的取值范围;
(Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

查看答案和解析>>

同步练习册答案