某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少.从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.
(1)求第n年初M的价值an的表达式;
(2)求数列的前n项和
(1) (2)
解析试题分析:(I)通过对n的分段讨论,得到一个等差数列和一个等比数列,利用等差数列的通项公式及等比数列的通项公式求出第n年初M的价值an的表达式;解:(I)当n<6时,数列{an}是首项为120,公差为-10的等差数列
an=120-10(n-1)=130-10n,当n≥6时,数列{an}是以a6为首项,公比为的等比数列,又a6=70,所以an=因此,第n年初,M的价值an的表达式为
(2)然后利用分类讨论的思想,和来分别求解,结合等差数列和等比数列的求和公式来的饿到,当,,
当,,
故可知
考点:等差数列、等比数列
点评:本题考查等差数列的通项公式,前n项和公式、考查等比数列的通项公式及前n项和公式、考查分段函数的问题要分到研究
科目:高中数学 来源: 题型:解答题
已知函数.
(1)若,函数是R上的奇函数,当时,
(i)求实数与的值;
(ii)当时,求的解析式;
(2)若方程的两根中,一根属于区间,另一根属于区间,求实数的
取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
二次函数的图像顶点为,且图像在x轴上截得线段长为8
(1)求函数的解析式;
(2)令
①若函数在上是单调增函数,求实数的取值范围;
②求函数在的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层(即x=0时),每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值;
(2)求f(x)的表达式;
(3)利用“函数(其中为大于0的常数),在上是减函数,在上是增函数”这一性质,求隔热层修建多厚时,总费用f(x)达到最小,并求出这个最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com