精英家教网 > 高中数学 > 题目详情

已知三角形的三边和面积S满足,求S的最大值。

 

【答案】

【解析】

试题分析:由题意及正弦定理可得

由余弦定理

所以,则当时,.

考点:本小题主要考查三角形的面积公式、正弦定理和余弦定理的应用以及利用基本不等式的变形公式求最值.

点评:基本不等式的变形公式应用时也要注意“一正二定三相等”三个条件缺一不可.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三角形的三边分别为a,b,c,内切圆的半径为r,则三角形的面积S=
1
2
(a+b+c)•r,四面体的四个面的面积分别为S1,S2,S3,S4,内切球的半径为R,类比三角形的面积可得四面体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形的三边分别为a,b,c,内切圆的半径为r,则三角形的面积为s=
1
2
(a+b+c)r;四面体的四个面的面积分别为s1,s2,s3,s4,内切球的半径为R.类比三角形的面积可得四面体的体积为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三角形的三边分别为a,b,c,内切圆的半径为r,则三角形的面积为s=
1
2
(a+b+c)r;四面体的四个面的面积分别为s1,s2,s3,s4,内切球的半径为R.类比三角形的面积可得四面体的体积为(  )
A.?=
1
2
(s1+s2+s3+s4)R
B.?=
1
3
(s1+s2+s3+s4)R
C.?=
1
4
(s1+s2+s3+s4)R
D.?=(s1+s2+s3+s4)R

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛二中高二(下)期中数学试卷(文科)(解析版) 题型:选择题

已知三角形的三边分别为a,b,c,内切圆的半径为r,则三角形的面积为s=(a+b+c)r;四面体的四个面的面积分别为s1,s2,s3,s4,内切球的半径为R.类比三角形的面积可得四面体的体积为( )
A.?=(s1+s2+s3+s4)R
B.?=(s1+s2+s3+s4)R
C.?=(s1+s2+s3+s4)R
D.?=(s1+s2+s3+s4)R

查看答案和解析>>

同步练习册答案