精英家教网 > 高中数学 > 题目详情
在△ABC中,BC=2,A=
3
,则
AB
AC
的最小值为
 
分析:在△ABC中角A,B,C所对的边分别为a,b,c,由余弦定理和基本不等式求出bc的取值范围,再由数量积公式可求出所求.
解答:解:在精英家教网△ABC中,角A,B,C所对的边分别为a,b,c,由余弦定理得b2+c2-2bccos
3
=4,
即b2+c2+bc=4≥3bc,
∴bc≤
4
3

AB
AC
=bccos
3
=-
1
2
bc≥-
1
2
×
4
3
=-
2
3

故答案为:-
2
3
点评:本题主要考查了向量在几何中的应用,以及余弦定理的应用和向量的数量积公式,同时考查了不等式求最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,|BC|=2|AB|,∠ABC=120°,则以A,B为焦点且过点C的双曲线的离心率为(  )
A、
7
+2
3
B、
6
+2
2
C、
7
-2
D、
3
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,(
BC
+
BA
)•
AC
=|
AC
|2
BA
BC
=3
|
BC
|=2
,则△ABC的面积是(  )
A、
3
2
B、
2
2
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC=1,∠B=2∠A,则
AC
cosA
的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC=6,BC边上的高为2,则
AB
AC
的最小值为
-5
-5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区二模)在△ABC中,BC=2,AC=
7
B=
π
3
,则AB=
3
3
;△ABC的面积是
3
3
2
3
3
2

查看答案和解析>>

同步练习册答案