精英家教网 > 高中数学 > 题目详情
已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈(π,2π)且|
m
+
n
|=
8
2
5
,则cos(
θ
2
+
π
8
)
=
-
4
5
-
4
5
分析:先利用向量条件得到cos(θ+
π
4
)
,然后利用倍角公式求则cos(
θ
2
+
π
8
)
的值.
解答:解:因为向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),
因为
m
+
n
=(
2
+cosθ-sinθ,sinθ+cosθ)

所以|
m
+
n
|
=
(
2
+cosθ-sinθ)
2
+(sinθ+cosθ)2
=
4+4cos(θ+
π
4
)
=
8cos2(
θ
2
+
π
8
)
=2
2
|cos(
θ
2
+
π
8
)|
=
8
2
5
,即|cos(
θ
2
+
π
8
)|=
4
5

因为θ∈(π,2π),所以
8
θ
2
+
π
8
8

所以cos(
θ
2
+
π
8
)=-
4
5

故答案为:-
4
5
点评:本题主要考查三角函数的倍角公式,利用向量关系先将条件化简是解决本题的关键,综合性较强,运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈[π,2π].
(1)求|
m
+
n
|的最大值;
(2)当|
m
+
n
|=
8
2
5
时,求cos(
θ
2
+
π
8
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
m
=(cosωx,sinωx),
.
n
=(cosωx,2
3
cosωx-sinωx),ω>0,函数f(x)=
.
m
.
n
+|
.
m
|,且函数f(x)图象的相邻两条对称轴之间的距离为
π
2

(1)作出函数y=f(x)-1在[0,π]上的图象
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,c=2,S△ABC=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
m
|+
m
n
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省豫东、豫北十所名校高三测试理科数学试卷(解析版) 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量m=(cos A,cos B),n=(2c+b,a),且m⊥n.

    (I)求角A的大小;

    (Ⅱ)若a=4,求△ABC面积的最大值.

 

查看答案和解析>>

同步练习册答案