精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量m=(cos A,cos B),n=(2c+b,a),且m⊥n.

    (I)求角A的大小;

    (Ⅱ)若a=4,求△ABC面积的最大值.

 

【答案】

 (Ⅰ)(Ⅱ)

【解析】本试题主要是考查了解三角形的运用。利用正弦定理和余弦定理表示角和变的关系式,并结合三角形的面积公式得到结论。

(1)利用向量的数量积,表示,然后正弦定理可得,化简得到角A。

(2)由余弦定理可得,,即(当且仅当时取等号),故.结合均值不等式得到面积的最大值。

解:(Ⅰ)∵,∴,由正弦定理可得,即,整理可得.…………(5分)

∵0<,∴>0,∴,∴.……………………(6分)

(Ⅱ)由余弦定理可得,,即(当且仅当时取等号),故.  ………(9分)

故△ABC的面积为,当且仅当时,△ABC的面积取得最大值

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案