精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系中,O为坐标原点,A,B,C三点满足$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$.
(Ⅰ)求证:A,B,C三点共线;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0,$\frac{π}{2}$],f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m2+$\frac{2}{3}$)•|$\overrightarrow{AB}$|的最小值为$\frac{1}{2}$,求实数m的值.

分析 (Ⅰ)将$\overrightarrow{OC}=\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}$代入$\overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA}$,然后进行向量的数乘运算即可得出$\overrightarrow{AC}=\frac{2}{3}\overrightarrow{AB}$,从而得出A,B,C三点共线;
(Ⅱ)由条件即可求出$\overrightarrow{OC},\overrightarrow{AB}$的坐标,进而求出$\overrightarrow{OA}•\overrightarrow{OC}$,及$|\overrightarrow{AB}|$的值,代入$f(x)=\overrightarrow{OA}•\overrightarrow{OC}-(2{m}^{2}+\frac{2}{3})|\overrightarrow{AB}|$并化简即可得出f(x)=-sin2x-2m2sinx+2,而配方即可得出sinx=1时,f(x)取最小值$\frac{1}{2}$,从而得到$-(1+{m}^{2})^{2}+{m}^{4}+2=\frac{1}{2}$,这样即可解出m的值.

解答 解:(Ⅰ)证明:根据条件:
$\overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA}$
=$\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}-\overrightarrow{OA}$
=$\frac{2}{3}(\overrightarrow{OB}-\overrightarrow{OA})$
=$\frac{2}{3}\overrightarrow{AB}$;
∴$\overrightarrow{AC}∥\overrightarrow{AB}$;
∴A,B,C三点共线;
(Ⅱ)根据条件:$\overrightarrow{OA}=(1,cosx),\overrightarrow{OB}=(1+sinx,cosx)$,$\overrightarrow{OC}=\frac{1}{3}(1,cosx)+\frac{2}{3}(1+sinx,cosx)$=$(1+\frac{2}{3}sinx,cosx)$,$\overrightarrow{AB}=(sinx,0)$,且$x∈[0,\frac{π}{2}]$;
∴$\overrightarrow{OA}•\overrightarrow{OC}=1+\frac{2}{3}sinx+co{s}^{2}x$=$-si{n}^{2}x+\frac{2}{3}sinx+2$,$|\overrightarrow{AB}|=sinx$;
∴$f(x)=-si{n}^{2}x+\frac{2}{3}sinx+2-(2{m}^{2}+\frac{2}{3})sinx$
=-sin2x-2m2sinx+2
=-(sinx+m22+m4+2;
又sinx∈[0,1];
∴sinx=1时,f(x)取最小值$\frac{1}{2}$;
即$-(1+{m}^{2})^{2}+{m}^{4}+2=\frac{1}{2}$;
∴${m}^{2}=\frac{1}{4}$;
∴$m=±\frac{1}{2}$.

点评 考查向量减法的几何意义,向量的数乘运算,共线向量基本定理,根据点的坐标求向量的坐标,以及向量数量积的坐标运算,配方法的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC
(1)求直线AB与平面EBC所成的角的大小;
(2)求二面角A-EB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=sin(2x+$\frac{π}{3}$)的最小正周期=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=-2+\sqrt{10}cosθ}\\{y=\sqrt{10}sinθ}\end{array}\right.$(θ为参数),曲线C2的极坐标方程为ρ=2cosθ+6sinθ.
(1)将曲线C1方程,将曲线C2极坐标方程化为直角坐标方程;
(2)曲线C1,C2是否相交,若相交请求出公共弦的长,若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{1}{3}{x^3}+ax+b(a,b∈R)$在x=2处取得极小值$-\frac{4}{3}$.
(1)求f(x)的单调递增区间;
(2)若$f(x)\;≤{m^2}+m+\frac{22}{3}$在[-4,3]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若平面α的一个法向量为$\overrightarrow{n}$=(0,2,2),A(1,0,2),B(0,-1,4),A∉α,B∈α,则点A到平面
α的距离为(  )
A.1B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.运行如图所示的程序框图,若输出的S是510,则①应为(  )
A.n≤5B.n≤6C.n≤7D.n≤8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知平面向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(4,-2)若λ$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则λ=1    .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若直线$\frac{x}{a}$+$\frac{y}{b}$=1(a>0,b>0)过点(2,1),则a+2b的最小值为8.

查看答案和解析>>

同步练习册答案