【题目】设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0]时,f(x)=( )x﹣1,若在区间(﹣2,6)内关于x的方程f(x)﹣log a(x+2)=0,恰有4个不同的实数根,则实数a(a>0,a≠1)的取值范围是( )
A.( ,1)
B.(1,4)
C.(1,8)
D.(8,+∞)
【答案】D
【解析】解:对于任意的x∈R,都有f(2+x)=f(2﹣x),
∴f(x+4)=f[2+(x+2)]=f[(x+2)﹣2]=f(x),
∴函数f(x)是一个周期函数,且T=4.
又∵当x∈[﹣2,0]时,f(x)=( )x﹣1,且函数f(x)是定义在R上的偶函数,
若在区间(﹣2,6)内关于x的方程f(x)﹣log a(x+2)=0,恰有4个不同的实数解,
则函数y=f(x)与y=log a(x+2),在区间(﹣2,6)上有四个不同的交点,如下图所示:
又f(﹣2)=f(2)=f(6)=1,
则对于函数y=log a(x+2),根据题意可得,当x=6时的函数值小于1,
即log a8<1,
由此计算得出:a>8,
∴a的范围是(8,+∞),
所以答案是:D.
科目:高中数学 来源: 题型:
【题目】设A、B、C为锐角△ABC的三个内角,M=sinA+sinB+sinC,N=cosA+2cosB,则( )
A.M<N
B.M=N
C.M>N
D.M、N大小不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:K2=
P(K2>k0) | 0.10 | 0.05 |
| 0.005 |
k0 | 2.706 | 3.841 |
| 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体ABCD﹣A1B1C1D1中,AA1=2AB=2BC,E,F,E1分别是棱AA1 , BB1 , A1B1的中点.
(1)求证:CE∥平面C1E1F;
(2)求证:平面C1E1F⊥平面CEF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,直l线l的参数方程为 (t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=10cosθ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点P的坐标为(2,6),求|PA|+|PB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (其中ω>0)
(I)求函数f(x)的值域;
(II)若对任意的a∈R,函数y=f(x),x∈(a,a+π]的图象与直线y=﹣1有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数y=f(x),x∈R的单调增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ln(2x﹣m)的定义域为集合A,函数g(x)= ﹣ 的定义域为集合B.
(Ⅰ)若BA,求实数m的取值范围;
(Ⅱ)若A∩B=,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题“非空集合 中的元素都是集合 中的元素”是假命题,
那么下列命题中真命题的个数为( )
① 中的元素都不是 中的元素 ② 中有不属于 的元素
③ 中有属于 的元素 ④ 中的元素不都是 中的元素
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com