精英家教网 > 高中数学 > 题目详情
16.设函数f(x)在x0处可导,则$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{t}$=(  )
A.-2f′(x0B.f′(x0C.4f′(x0D.$\frac{1}{4}$f′(x0

分析 根据导数定义:$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{t}$=4$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{4t}$=4f'(x0).

解答 解:根据函数f(x)在x=x0处导数的定义,
$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{t}$
=4•$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{4t}$
=4•$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{({x}_{0}+t)-({x}_{0}-3t)}$
=4f'(x0),
故选:C.

点评 本题主要考查了函数在某一点处导数的定义,合理进行恒等变形是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知△ABC中,内角A,B,C,的对边分别为a,b,c,若$\frac{a+b}{c}$=$\frac{sin(A+B)-\sqrt{2}sinB}{sinA-sinB}$.
(1)求角A的大小;
(2)若a=4$\sqrt{2}$,且△ABC的面积为16,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若sinα=$\frac{m-1}{3}$,α∈[-$\frac{π}{6}$,$\frac{2π}{3}$],则m的取值范围是-$\frac{1}{2}$≤m≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是成品加工流程图,从图中可以看出,即使是一件不合格产品,也必须经过多少道工序(  )
A.6B.5或7C.5D.5或6或7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知n∈N*,n>1,n个实数a1,a2,…,an 满足a1+a2+…+an=0,|a1|+|a2|+…+|an |=1.求证:|a1+2a2+3a3+…+n|an|≤$\frac{n-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(文科)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.
(理科)曲线y=x2与y=x所围成的封闭图形的面积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{8}{x-1}$+1的单调递减区间是(  )
A.(-∞,1)∪(1,+∞)B.(-∞,-1)∪(-1,+∞)C.(-∞,1),(1,+∞)D.(-∞,-1),(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(Ⅰ)请根据数据在答题卡的茎叶图中完成物理成绩统计;
(Ⅱ)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;
数学成绩的频数分布表

(Ⅲ)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}{x}_{i}$=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC的顶点的极坐标为A(4,$\frac{4π}{3}$)、B(6,$\frac{5π}{6}$)、C(8,$\frac{7π}{6}$).
(1)判断△ABC的形状;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案