【题目】在直角坐标系xOy中,点P到两点(0,),(0,)的距离之和为4,设点P的轨迹为C,直线y=kx+1与A交于A,B两点.
(1)写出C的方程;
(2)若,求k的值.
【答案】(1)x21;(2)±
【解析】
(1)根据已知条件可判断动点轨迹为椭圆,结合题意写出椭圆方程即可;
(2)联立直线方程与椭圆方程,根据韦达定理以及向量垂直,即可求得参数.
(1)设P(x,y),由椭圆定义可知,
点P的轨迹C是以(0,),(0,)为焦点,长半轴为2的椭圆.
它的短半轴b1,
故曲线C的方程为x21.
(2)设A(x1,y1),B(x2,y2),
其坐标满足,
消去y并整理得(k2+4)x2+2kx﹣3=0,
故x1+x2,x1x2,
若,即x1x2+y1y2=0.
而y1y2=k2x1x2+k(x1+x2)+1,
则x1x2+y1y21=0,
化简得﹣4k2+1=0,
解得k=±.
科目:高中数学 来源: 题型:
【题目】直线l过曲线C:yx2的焦点F,并与曲线C交于A(x1,y1),B(x2,y2)两点.
(1)求证:x1x2=﹣16;
(2)曲线C分别在点A,B处的切线(与C只有一个公共点,且C在其一侧的直线)交于点M,求点M的轨迹.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点形成轨迹.
(1)求轨迹的方程;
(2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).是曲线上的动点,将线段绕点顺时针旋转得到线段,设点的轨迹为曲线.以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(I)求曲线,的极坐标方程;
(II)在(I)的条件下,若射线与曲线,分别交于两点(除极点外),且有定点,求面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且满足Sn-n=2(an-2),(n∈N*)
(1)证明:数列{an-1}为等比数列.
(2)若bn=anlog2(an-1),数列{bn}的前项和为Tn,求Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学图书馆举行高中志愿者检索图书的比赛,从高一、高二两个年级各抽取10名志愿者参赛。在规定时间内,他们检索到的图书册数的茎叶图如图所示,规定册数不小于20的为优秀.
(Ⅰ) 从两个年级的参赛志愿者中各抽取两人,求抽取的4人中至少一人优秀的概率;
(Ⅱ) 从高一10名志愿者中抽取一人,高二10名志愿者中抽取两人,3人中优秀人数记为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x),x∈R.
(1)若f(x)是偶函数,求实数a的值;
(2)当a>0时,不等式f(sinxcosx)﹣f(4+t)≥0对任意的x∈恒成立,求实数t的取值范围;
(3)当a>0时,关于x的方程在区间[1,2]上恰有两个不同的实数解,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com