精英家教网 > 高中数学 > 题目详情
(几何证明选讲选做题)已知PA是圆O的切线,切点为APA=2.AC是圆O的直径,PC与圆O交于点BPB=1,则圆O的半径为R=         
本题考查圆的切割线定理及应用,由PA=2, PB=1及,得,又由于PA是圆O的切线,切点为A,故
故半径R=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题12分)求过两圆的交点,
(Ⅰ)且过M的圆的方程;
(Ⅱ)且圆心在直线上的圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在平面直角坐标系中,已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)在平面内是否存在一点,使得过点有无穷多对互相垂直的直线,它们分别与圆和圆相交,且直线被圆截得的弦长的倍与直线被圆截得的弦长相等?若存在,求出所有满足条件的点的坐标;若不存在,请说明理由.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C1的方程为动圆C与圆C1、C2相外切。
(I)求动圆C圆心轨迹E的方程;
(II)若直线且与轨迹E交于P、Q两点。
①设点无论怎样转动,都有
成立?若存在,求出实数m的值;若不存在,请说明理由;
②过P、Q作直线的垂线PA、QB,垂足分别为A、B,记的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆交于A、B两点;
(1)求过A、B两点的直线方程;
(2)求过A、B两点,且圆心在直线上的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一动圆与圆C1: x2+y2+2x-4y+1=0外切,并且和定圆C2: x2+y2-10x-4y-71=0内切,求动圆圆心的的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程为x2+y2=r2,圆内有定点Pa,b),圆周上有两个动点AB,使PAPB,求矩形APBQ的顶点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为(  )
A.5
2
-4
B.
17
-
1
C.6-2
2
D.
17

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从圆外一点向这个圆作两条切线,则两切线夹角的余弦值为                

查看答案和解析>>

同步练习册答案