精英家教网 > 高中数学 > 题目详情
15.在△ABC中,角A,B,C所对的边为a,b,c.已知$\frac{c}{2}$=b-acosC.
(1)求角A的大小;
(2)若a=$\sqrt{15}$,b=4,求边c的大小.

分析 (1)直接利用余弦定理化简已知条件,然后求角A的余弦函数值,即可求解;
(2)由已知利用余弦定理可得c2-4c+1=0,即可解得c的值.

解答 解:(1)在△ABC中,角A、B、C的对边分别为a、b、c,若$\frac{c}{2}$=b-acosC=b-a$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
可得2b2-bc=a2+b2-c2,即c2+b2-bc=a2,又由余弦定理c2+b2-2bccosA=a2
∴cosA=$\frac{1}{2}$,
∴A=60°.
(2)∵a=$\sqrt{15}$,b=4,A=60°,
∴由余弦定理a2=b2+c2-2bccosA,可得:15=16+c2-2×$4×c×\frac{1}{2}$,整理可得:c2-4c+1=0,
∴解得:c=2±$\sqrt{3}$.

点评 本题考查余弦定理在解三角形中的应用,考查分析问题解决问题的能力,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设集合A={1,2,3},B={2,4},全集U={0,1,2,3,4}则(∁UA)∪B={0,2,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量$\overrightarrow{a}$1=$[\begin{array}{l}{1}\\{1}\end{array}]$,特征值λ2=-1及其对应的一个特征向量$\overrightarrow{a}$2=$[\begin{array}{l}{1}\\{-1}\end{array}]$,
(1)求矩阵A;  
(2)求矩阵A的逆矩阵A-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出以下四个问题,
①输入一个数x,输出它的相反数.
②求面积为6的正方形的周长.
③求三个数a,b,c中的最大数.
④求函数f(x)=$\left\{\begin{array}{l}{x-1,x≥0}\\{x+2,x<0}\end{array}\right.$的函数值.
其中不需要用条件语句来描述其算法的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设A={(x,y)|2x+y=7},B={(x,y)|x+2y=5},则A∩B=(  )
A.{x=3或y=1}B.{3,1}C.{(3,1)}D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设U=R,集合A={x|x2+3x+2=0},B={x|(x+1)(x+m)=0},
(1)若m=1,用列举法表示集合A、B;
(2)若m≠1,且B⊆A,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设An和Bn是等差数列{an}和{bn}的前n项和,若$\frac{a_5}{b_7}=1$,则$\frac{A_9}{{{B_{13}}}}$=(  )
A.$\frac{9}{13}$B.$\frac{5}{7}$C.$\frac{17}{25}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=2sin(ωx+φ$)(ω>0,-\frac{π}{2}<$(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则f(x)的图象可由函数g(x)=2sinωx的图象至少向右平移$\frac{π}{6}$个单位得到.

查看答案和解析>>

同步练习册答案