精英家教网 > 高中数学 > 题目详情
7.甲、乙、丙、丁、戊五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为$\frac{1}{4}$.

分析 使用捆绑法分别计算甲乙相邻,和甲同时与乙,丙相邻的排队顺序个数,利用古典概型的概率公式得出概率.

解答 解:甲乙相邻的排队顺序共有2${A}_{4}^{4}$=48种,
其中甲乙相邻,甲丙相邻的排队顺序共有2${A}_{3}^{3}$=12种,
∴甲乙相邻的条件下,甲丙也相邻的概率为$\frac{12}{48}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查了排列数公式的应用,古典概型的概率计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{a}^{2}}$=1与双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1焦点相同,则a=$±\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心是坐标原点,直线$\sqrt{3}x-2y-4\sqrt{3}=0$过它的两个顶点.
(1)求椭圆C的标准方程;
(2)设A(-4,0),过R(3,0)作与x轴不重合的直线l交椭圆于P,Q两点,连接AP,AQ,分别交直线$x=\frac{16}{3}$于M,N两点,试问直线MR,NR的斜率之积是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“若x=3,则x2-9x+18=0”的逆命题、否命题和逆否命题中,假命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=(1+x)2-2ln(x+1).
(1)如果关于的x不等式f(x)-m≥0在[0,e-1]上有实数解,求实数m的取值范围;
(2)设g(x)=f(x)-x2-1,若关于x的方程g(x)=p至少有一个实数解,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=ex-ax(a>0).
(1)当a=1时,求f(x)的最小值;
(2)若对一切x∈R,f(x)≥1恒成立,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$f(x)=\left\{\begin{array}{l}(3a-1)x+4a,x<1\\ \begin{array}{l}{{a^x}-a},{x≥1}\end{array}\end{array}\right.$是R上的减函数,则a的范围是(  )
A.(0,1)B.$(0,\frac{1}{3})$C.$[\frac{1}{7},\frac{1}{3})$D.$[\frac{1}{7},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}前n项和为Sn,满足${S_n}=2{a_n}-2n(n∈{N^*})$
(1)证明:{an+2}是等比数列,并求{an}的通项公式;
(2)数列{bn}满足${b_n}=log_2^{{a_n}+2}$,Tn为数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和,若Tn<a对正实数a都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知z∈C,“$z+\overline z=0$”是“z为纯虚数”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案