精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=(1+x)2-2ln(x+1).
(1)如果关于的x不等式f(x)-m≥0在[0,e-1]上有实数解,求实数m的取值范围;
(2)设g(x)=f(x)-x2-1,若关于x的方程g(x)=p至少有一个实数解,求实数p的取值范围.

分析 (1)求导,由题意可知:函数y=f(x)在[0,e-1]上是递增的,则原不等式等价于f(x)max≥m在[0,e-1]上成立,即可求得实数m的取值范围;
(2)求导,令g'(x)=0,求得函数的单调性,则g(x)min=g(0)=0,由题意可知p≥0,即可求得实数p的取值范围.

解答 解:(1)$f'(x)=\frac{2x(x+2)}{x+1}≥0$在[0,e-1]上恒成立,
∴函数y=f(x)在[0,e-1]上是递增的,此时,$f{(x)_{max}}=f(e-1)={e^2}-2$,
关于的x不等式f(x)-m≥0在[0,e-1]上有实数解,等价于f(x)max≥m在[0,e-1]上成立,
∴m≤e2-2.  (6分)
(2)g(x)=2x-2ln(x+1),求导,$g'(x)=\frac{2x}{x+1}(x>-1)$
令g'(x)=0,得x=0,易知y=g(x)在(-1,0)上是递减的,在(0,+∞)上是递增的,
∴g(x)min=g(0)=0,
∴关于x的方程g(x)=p至少有一个实数解,则p的取值范围为:p≥0,
实数p的取值范围[0,+∞).        (12分)

点评 本题考查导数的综合应用,考查利用导数求函数的单调性,考查导数与不等式的综合应用,考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在△ABC中,$\overrightarrow{AC}•\overrightarrow{CB}=2\sqrt{2}$,其面积为$\sqrt{2}$,则tan2A•sin2B的最大值是3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知公差不为零的等差数列{an},满足a1=2,且a1,a2,a4成等比数列,数列{bn}是首项为9,公比为3的等比数列.
(1)求数列的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=Asin({ωx+φ}),({A>0,ω>0,0<φ<\frac{π}{2}}),x∈R,f(x)$的最小值为-4,f(0)=2$\sqrt{2}$,且相邻两条对称轴之间的距离为π.
(I)当$x∈[{-\frac{π}{2},\frac{π}{2}}]$时,求函数f(x)的最大值和最小值;
(II)若$x∈({\frac{π}{2},π})$,且$f(x)=1,求cos({x+\frac{5π}{12}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.甲、乙、丙、丁、戊五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)={log_2}|x+\frac{1}{2}|$和g(x)=3sinxπ,若$x∈(-\frac{7}{2},-\frac{1}{2})∪(-\frac{1}{2},\frac{5}{2})$,则两函数图象交点的横坐标之和等于-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将4个不同的小球装入4个不同的盒子,则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率是(  )
A.$\frac{21}{58}$B.$\frac{12}{29}$C.$\frac{21}{64}$D.$\frac{7}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是(  )
A.$9+4({\sqrt{2}+\sqrt{5}})c{m^2}$B.$10+2({\sqrt{2}+\sqrt{3}})c{m^2}$C.$11+2({\sqrt{2}+\sqrt{5}})c{m^2}$D.$11+2({\sqrt{2}+\sqrt{3}})c{m^2}$

查看答案和解析>>

同步练习册答案