精英家教网 > 高中数学 > 题目详情
18.在△ABC中,$\overrightarrow{AC}•\overrightarrow{CB}=2\sqrt{2}$,其面积为$\sqrt{2}$,则tan2A•sin2B的最大值是3-2$\sqrt{2}$.

分析 根据数量积运算与三角形的面积公式求出C的值,从而求出A+B的值;利用三角恒等变换化tan2A•sin2B为tan2A•$\frac{1{-tan}^{2}A}{1{+tan}^{2}A}$,设tan2A=t,t∈(0,1);上式化为t•$\frac{1-t}{1+t}$=$\frac{t(1-t)}{1+t}$,利用基本不等式求出它的最大值.

解答 解:△ABC中,$\overrightarrow{AC}•\overrightarrow{CB}=2\sqrt{2}$,
∴bacos(π-C)=-bacosC=2$\sqrt{2}$,
∴abcosC=-2$\sqrt{2}$;
又三角形的面积为$\frac{1}{2}$absinC=$\sqrt{2}$,
∴absinC=2$\sqrt{2}$;
∴sinC=-cosC,
∴C=$\frac{3π}{4}$,
∴A+B=$\frac{π}{4}$;
∴tan2A•sin2B=tan2A•sin2($\frac{π}{4}$-A)
=tan2A•cos2A
=tan2A•(cos2A-sin2A)
=tan2A•$\frac{{cos}^{2}A{-sin}^{2}A}{{sin}^{2}A{+cos}^{2}A}$
=tan2A•$\frac{1{-tan}^{2}A}{1{+tan}^{2}A}$;
设tan2A=t,则t∈(0,1);
上式化为t•$\frac{1-t}{1+t}$=$\frac{t(1-t)}{1+t}$
=$\frac{{-(t+1)}^{2}+3(t+1)-2}{t+1}$
=-(t+1)-$\frac{2}{t+1}$+3≤-2•$\sqrt{(t+1)•\frac{2}{t+1}}$+3=3-2$\sqrt{2}$,
当且仅当t+1=$\sqrt{2}$,即t=$\sqrt{2}$-1时取“=”;
∴所求的最大值是3-2$\sqrt{2}$.

点评 本题考查了平面向量的数量积运算与三角形的面积公式以及三角恒等变换和基本不等式的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.为研究造成死亡的结核病类型与性别的关系,取得如下资料:
男 性女 性
呼吸系统结核3 5341 319
能造成死亡的结核病类型270252
由此你能得出什么结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=$\frac{ax+1}{x-2}$满足f(4-x)+f(x)=2.
(Ⅰ)求a的值,并用函数单调性的定义证明f(x)在(3,+∞)上是减函数;
(Ⅱ)若g(x)=|x+a|+|2x-3|,画出函数g(x)的简图并求出该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若方程$2sin(2x+\frac{π}{6})=m$在$x∈[0,\frac{π}{2}]$上有两个不相等的实数解x1,x2,则x1+x2=(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且过点(-1,$\frac{3}{2}$),椭圆C的右焦点为A,点B的坐标为($\frac{1}{2}$,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知纵坐标不同的两点P,Q为椭圆C上的两个点,且B、P、Q三点共线,线段PQ的中点为R,求直线AR的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{a}^{2}}$=1与双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1焦点相同,则a=$±\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数$f(x)=\left\{{\begin{array}{l}{{2^x}-3,x<0}\\{\sqrt{x+1},x≥0}\end{array}}\right.$若f(a)>1,则实数a的取值范围是(  )
A.(0,2)B.(0,+∞)C.(2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)当a=3时,求A∩B;
(2)若a>0,且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=(1+x)2-2ln(x+1).
(1)如果关于的x不等式f(x)-m≥0在[0,e-1]上有实数解,求实数m的取值范围;
(2)设g(x)=f(x)-x2-1,若关于x的方程g(x)=p至少有一个实数解,求实数p的取值范围.

查看答案和解析>>

同步练习册答案