分析 (1)当a=3时,我们先分别化简集合A,B,再求A∩B;
(2)A∩B=∅,也就是,集合A,B没有公共元素,这样,就可以建立不等关系,从而可求实数a的取值范围.
解答 解:(1)当a=3时,A={-1≤x≤5},B={x≤1或x≥4}
∴A∩B={-1≤x≤1或4≤x≤5}
(2)∵A∩B=∅,A={x|2-a≤x≤2+a}(a>0),B={x≤1或x≥4}
∴$\left\{\begin{array}{l}{2-a>1}\\{2+a<4}\end{array}\right.$,
∴a<1,
∵a>0,
∴0<a<1.
点评 解答集合之间的关系的关键是理解集合的运算,建立不等关系,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{21}{58}$ | B. | $\frac{12}{29}$ | C. | $\frac{21}{64}$ | D. | $\frac{7}{27}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com