分析 (1)根据等比数列和等差数列的通项公式进行求解即可求数列{an},{bn}的通项公式;
(2)求出数列{cn}的通项公式,利用错位相减法进行求和即可
解答 解:(1)∵数列{an}是首项a1=2的等差数列,a1,a2,a4成等比数列,
所以${{a}_{2}}^{2}={a}_{1}•{a}_{4}$即(2+d)2=2(2+3d),解得d=2(d=0舍去),
数列{bn}是首项为9,公比为3的等比数列.
∴an=2+2(n-1)=2n.bn=3n+1;
(2)∵an=2n,bn=3n+1.
∴cn=an•bn=2n•3n+1.
则Sn=c1+c2+c3+…+cn,
即Sn=2•32+4•33+…+2n•3n+1,
3Sn=2•33+4•34+…+2(n-1)•3n+1+(2n)•3n+2,
两式相减得-2Sn=2•32+2•33+2•34+…+2•3n+1-(2n)•3n+2
=2×$\frac{{3}^{2}(1-{3}^{n})}{1-3}$-(2n)•3n+2
=-9+3n+2-(2n)•3n+2
=-9+(1-2n)•3n+2
则Sn=$\frac{9}{2}$+(n-$\frac{1}{2}$)•3n+2.
点评 本题主要考查等比数列和等差数列的通项公式的求解,以及利用错位相减法进行求和,考查学生的运算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 京剧票友 | 一般爱好者 | 合计 | |
| 50岁以上 | 15 | 10 | 25 |
| 50岁以下 | 3 | 12 | 15 |
| 合计 | 18 | 22 | 40 |
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 |
| 0.455 | 0.708 | 1.323 | 2.027 | 2.706 |
| 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | $(0,\frac{1}{3})$ | C. | $[\frac{1}{7},\frac{1}{3})$ | D. | $[\frac{1}{7},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com