精英家教网 > 高中数学 > 题目详情
11.将4个不同的小球装入4个不同的盒子,则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率是(  )
A.$\frac{21}{58}$B.$\frac{12}{29}$C.$\frac{21}{64}$D.$\frac{7}{27}$

分析 根据题意,由分步计数原理计算可得“将4个不同的小球装入4个不同的盒子”的放法数目,进而由排列、组合数公式计算“没有空盒”、“有1个空盒的放法”、“有3个空盒”的放法数目,由古典概型公式计算可得“至少一个盒子为空”以及“恰好有两个盒子为空”的概率,最后由条件概率的计算公式计算可得答案.

解答 解:根据题意,将4个不同的小球装入4个不同的盒子,有44=256种不同的放法,
若没有空盒,有A44=24种放法,有1个空盒的放法有C41C42A33=144种,有3个空盒的放法有C41=4种,
则至少一个盒子为空的放法有256-24=232种,故“至少一个盒子为空”的概率P1=$\frac{232}{256}$,
恰好有两个盒子为空的放法有256-24-144-4=84种,故“恰好有两个盒子为空”的概率P2=$\frac{84}{256}$,
则则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率p=$\frac{{p}_{2}}{{p}_{1}}$=$\frac{21}{58}$;
故选:A.

点评 本题考查条件概率的计算,涉及排列、组合的应用,关键是求出“至少一个盒子为空”以及“恰好有两个盒子为空”的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)当a=3时,求A∩B;
(2)若a>0,且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=(1+x)2-2ln(x+1).
(1)如果关于的x不等式f(x)-m≥0在[0,e-1]上有实数解,求实数m的取值范围;
(2)设g(x)=f(x)-x2-1,若关于x的方程g(x)=p至少有一个实数解,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$f(x)=\left\{\begin{array}{l}(3a-1)x+4a,x<1\\ \begin{array}{l}{{a^x}-a},{x≥1}\end{array}\end{array}\right.$是R上的减函数,则a的范围是(  )
A.(0,1)B.$(0,\frac{1}{3})$C.$[\frac{1}{7},\frac{1}{3})$D.$[\frac{1}{7},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把数列依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,…循环分为:(3),(5,7),(9,11,13),(15,17,19,21),…,则第104个括号内各数之和为(  )
A.2036B.2048C.2060D.2072

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}前n项和为Sn,满足${S_n}=2{a_n}-2n(n∈{N^*})$
(1)证明:{an+2}是等比数列,并求{an}的通项公式;
(2)数列{bn}满足${b_n}=log_2^{{a_n}+2}$,Tn为数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和,若Tn<a对正实数a都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,已知AB=AC=3,BC=4,P为BC边上的动点,则$\overrightarrow{AP}•(\overrightarrow{AB}+\overrightarrow{AC})$的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=sin x+cos x,f′(x)是f(x)的导函数.若f(x)=2f′(x),则$\frac{1+si{n}^{2}x}{co{s}^{2}x-sinxcosx}$=$\frac{11}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.阅读如图程序框图,当输入x的值为2时,运行相应程序,则输出x的值为(  )
A.5B.11C.23D.47

查看答案和解析>>

同步练习册答案