精英家教网 > 高中数学 > 题目详情

 

21.(本小题满分14分)

定义数列{an}如下:a1=2,an1=an2-an+1,n∈N*.证明:

(1)对于n∈N* 恒有an1>an 成立;

(2)当n∈N*时,有an1=anan1…a2a1+1成立;

(3)


解析:

证(1)∵ ∴an1-an=(an-1)2≥0

假设存在某个ak=1,则ak1=1 a1=1 这与a1=2矛盾  ∴an≠1 (n∈N+)

∴an1-an=(an-1)2>0即an1-an>0   ∴an1>an  

(2)ak1=-ak+1,k∈N+且a1=2  ∴当n∈N+时,ak1-1=ak( ak1)

则an1-1=an( an1)=an· an1( an1??-1)

=…=an· an1·an2… a2 ( a1??-1)

=an· an1·an2… a1

∴当n∈N+时有:an1=an an1…a1??+1

(3)由ak+1=-ak+1及(1)(2)可得:an1>an>a1=2且ak+1-1=ak( ak1)>0 (k∈N+)

∴2007k=1=+2007k=2

= <1

而<

∴≥  故<2007k=1<1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案