精英家教网 > 高中数学 > 题目详情
若直线2x+3y-1=0与直线mx-y=0垂直,则实数m的值为
3
2
3
2
分析:由已知中直线2x+3y-1=0与直线mx-y=0垂直,根据两直线垂直,则对应系数乘积的和为0,可以构造一个关于m的方程,解方程即可得到答案.
解答:解:若直线2x+3y-1=0与直线mx-y=0互相垂直,
则2×m+3×(-1)=0
解得m=
3
2

故答案为:
3
2
点评:本题考查的知识点是直线的一般式方程与直线的垂直关系,其中Ax+By+C=0与Ex+Fy+G=0垂直?AE+BF=0是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下四个结论:
(1)函数f(x)=
x-1
x+1
的对称中心是(-1,-1);
(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,则3b-2a>1;
(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
π
12
其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下五个结论:
(1)函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,
b
a-1
的取值范围为(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
12

(5)已知m,n是两条不重合的直线,α,β是两个不重合的平面,若m⊥α,n∥β且m⊥n,则α⊥β;其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个结论:
①函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

②若不等式mx2-mx+1>0对任意的x∈R都成立,则0<m<4;
③已知点P(a,b)与点Q(l,0)在直线2x-3y+1=0两侧,则3b-2a>1;
④若将函数f(x)=sin(2x-
π
3
)
的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是
π
12

其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若直线2x+3y-1=0与直线mx-y=0垂直,则实数m的值为________.

查看答案和解析>>

同步练习册答案