精英家教网 > 高中数学 > 题目详情
给出以下四个结论:
①函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

②若不等式mx2-mx+1>0对任意的x∈R都成立,则0<m<4;
③已知点P(a,b)与点Q(l,0)在直线2x-3y+1=0两侧,则3b-2a>1;
④若将函数f(x)=sin(2x-
π
3
)
的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是
π
12

其中正确的结论是:
 
分析:根据函数的对称中心、平移等基本性质,对①②②③④四个命分别进行分析判断,能求出正确结果.
解答:解:函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
1
2
),故①错误;
若不等式mx2-mx+1>0对任意的x∈R都成立,则0≤m<4,故②错误;
点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,
∵把Q(1,0)代入2x-3y+1=3>0,
∴2a-3b+1<0,
∴3b-2a>1,故③正确;
将函数f(x)=sin(2x-
π
3
)的图象向右平移φ(φ>0)个单位后,
f(x)=sin(2x-2θ-
π
3
),
∵此时f(x)变为偶函数,
∴2θ+
π
3
=kπ+
π
2
,k∈Z.解得θ=
2
+
π
12
,k∈Z,
∵θ>0,∴k=0时,θ取最小值
π
12
,故④正确.
故答案为:③④.
点评:本题考查命题的真假判断,解题时要熟练掌握命题的对称中心、不等式性质、线性规划、函数平移等知识点,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下四个结论:
(1)函数f(x)=
x-1
x+1
的对称中心是(-1,-1);
(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,则3b-2a>1;
(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
π
12
其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,AH为BC边上的高,给出以下四个结论:
AH
BC
=0
;②
AB
AH
=c•sinB
;③
BC
•(
AC
-
AB
)
=b2+c2-2bc•cosA;④
AH
•(
AB
+
BC
)=
AH
AB
.其中所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A、B、C所对边分别为a、b、c,AH为BC边上的高,给出以下四个结论:
①若a=1,b=
3
,则“A=
π
6
”是“B=
π
3
”成立的充分不必要条件;
AH
•(
AC
-
AB
)=0

BC
•(
AB
-
AC
)=b2+c2-2bccosA

AH
•(
AB
+
BC
)=
AH
AB

其中所有真命题的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)的定义域都是D,又h(x)=f(x)+g(x).若f(x),g(x)的最大值分别是M、N,最小值分别是m、n,给出以下四个结论:
(1)h(x)的最大值是M+N;
(2)h(x)的最小值是m+n;
(3)h(x)的值域是{y|m+n≤y≤M+N};
(4)h(x)的值域是{y|m+n≤y≤M+N}的一个子集.
则正确结论的个数是(  )

查看答案和解析>>

同步练习册答案