精英家教网 > 高中数学 > 题目详情

若点P(3,-1)为圆的弦AB的中点,则直线AB的方程为( )

A.x+y-2=0          B.2x-y-7=0         C.2x+y-5=0          D.x-y-4=0

 

【答案】

D

【解析】

试题分析:由圆中弦的中点与圆心连线垂直于弦知,,又过点P(3,-1),∴直线AB的方程为x-y-4=0,故选D

考点:本题考查了圆的性质

点评:研究直线和圆的位置关系的相关问题时通常采用“几何法”即抓住圆心到直线的的距离与半径的关系

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•海淀区一模)若点P(3,-1)为圆(x-2)2+y2=25的弦AB的中点,则直线AB的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•海淀区一模)圆C的参数方程为:
x=2+5cosθ
y=5sinθ
(θ为参数),则圆C的圆心坐标是
(2,0)
(2,0)
;若点P(3,-1)为圆C的弦AB的中点,则直线AB的斜率是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)已知双曲线
x2
2
-
y2
b2
=1(b>0)
的左、右焦点分别是F1、F2,其一条渐近线方程为y=x,则b=
2
2
;若点p(
3
y0
)在双曲线上,则
PF1
PF2
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三条平行直线l1,l,l2把平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域(不含边界),且直线l到l1,l2的距离相等.点O在直线l上,点A、B在直线
l1上,P为平面区域内一点,且
OP
=λ1
OA
+λ2
OB
(λ1λ2∈R)
,给出下列四个命题:
(1)若λ1>1,λ2>1,则点P位于区域Ⅰ;
(2)若点P位于区域Ⅱ,则λ12>1;
(3)若点P位于区域Ⅲ,则-1<λ12<0;
(4)若点P位于区域IV,则λ12<-1;
则所有正确命题的序号为
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

同步练习册答案