在三棱锥SABC中,底面是边长为2的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和底面成45°角.
(1)若D为侧棱SB上一点,当为何值时,CD⊥AB;
(2)求二面角S-BC-A的余弦值大小.
科目:高中数学 来源: 题型:解答题
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(1)证明:AB=AC
(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.
求证:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥O—ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点。
(1)求证:直线BD⊥平面OAC;
(2)求直线MD与平面OAC所成角的大小;
(3)求点A到平面OBD的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1DCD1.
(1)当点E在棱AB上移动时,证明:D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1ECD的平面角为?若存在,求出AE的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com