精英家教网 > 高中数学 > 题目详情
(2013•上海)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=log2
2x4-x
 图象对称中心的坐标;
(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)-b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
分析:(1)先写出平移后图象对应的函数解析式为y=(x+1)3-3(x+1)2+2,整理得y=x3-3x,由于函数y=x3-3x是奇函数,利用题设真命题知,函数g(x)图象对称中心.
(2)设h(x)=log2
2x
4-x
 的对称中心为P(a,b),由题设知函数h(x+a)-b是奇函数,从而求出a,b的值,即可得出图象对称中心的坐标.
(3)此命题是假命题.举反例说明:函数f(x)=x的图象关于直线y=-x成轴对称图象,但是对任意实数a和b,函数y=f(x+a)-b,即y=x+a-b总不是偶函数.修改后的真命题:“函数y=f(x)的图象关于直线x=a成轴对称图象”的充要条件是“函数y=f(x+a)是偶函数”.
解答:解:(1)平移后图象对应的函数解析式为y=(x+1)3-3(x+1)2+2,整理得y=x3-3x,
由于函数y=x3-3x是奇函数,由题设真命题知,函数g(x)图象对称中心的坐标是(1,-2).
(2)设h(x)=log2
2x
4-x
 的对称中心为P(a,b),
由题设知函数h(x+a)-b是奇函数.
设f(x)=h(x+a)-b,则f(x)=log2
2(x+a)
4-(x+a)
-b,
即f(x)=log2
2x+2a
4-x-a
-b

由不等式
2x+2a
4-x-a
>0
的解集关于原点对称,则-a+(4-a)=0,得a=2.
此时f(x)=log2
2(x+2)
4-(x+2)
-b,x∈(-2,2).
任取x∈(-2,2),由f(-x)+f(x)=0,得b=1,
所以函数h(x)=log2
2x
4-x
 图象对称中心的坐标是(2,1).
(3)此命题是假命题.
举反例说明:函数f(x)=x的图象关于直线y=-x成轴对称图象,
但是对任意实数a和b,函数y=f(x+a)-b,即y=x+a-b总不是偶函数.
修改后的真命题:“函数y=f(x)的图象关于直线x=a成轴对称图象”的充要条件是“函数y=f(x+a)是偶函数”.
点评:本小题主要考查命题的真假判断与应用,考查函数单调性的应用、函数奇偶性的应用、函数的对称性等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•上海)已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A,B是下底面圆周上两个不同的点,BC是母线,如图,若直线OA与BC所成角的大小为
π
6
,则
l
r
=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知a,b,c∈R,“b2-4ac<0”是“函数f(x)=ax2+bx+c的图象恒在x轴上方”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知向量
a
=(1,k)
b
=(9,k-6)
.若
a
b
,则实数 k=
-
3
4
-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知抛物线C:y2=4x 的焦点为F.
(1)点A,P满足
AP
=-2
FA
.当点A在抛物线C上运动时,求动点P的轨迹方程;
(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案