精英家教网 > 高中数学 > 题目详情
(2013•上海)已知抛物线C:y2=4x 的焦点为F.
(1)点A,P满足
AP
=-2
FA
.当点A在抛物线C上运动时,求动点P的轨迹方程;
(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.
分析:(1)设出动点P和A的坐标,求出抛物线焦点F的坐标,由
AP
=-2
FA
得出P点和A点的关系,由代入法求动点P的轨迹方程;
(2)设出点Q的坐标,在设出其关于直线y=2x的对称点Q的坐标,由斜率关系及中点在y=2x上得到两对称点坐标之间的关系,再由点Q在抛物线上,把其坐标代入抛物线方程即可求得Q点的坐标.
解答:解:(1)设动点P的坐标为(x,y),点A的坐标为(xA,yA),则
AP
=(x-xA,y-yA)

因为F的坐标为(1,0),所以
FA
=(xA-1,yA)

AP
=-2
FA
,得(x-xA,y-yA)=-2(xA-1,yA).
x-xA=-2(xA-1)
y-yA=-2yA
,解得
xA=2-x
yA=-y

代入y2=4x,得到动点P的轨迹方程为y2=8-4x.
(2)设点Q的坐标为(t,0).点Q关于直线y=2x的对称点为Q(x,y),
y
x-t
=-
1
2
y
2
=x+t
,解得
x=-
3
5
t
y=
4
5
t

若Q在C上,将Q的坐标代入y2=4x,得4t2+15t=0,即t=0或t=-
15
4

所以存在满足题意的点Q,其坐标为(0,0)和(-
15
4
,0
).
点评:本题考查了轨迹方程,考查了直线和圆锥曲线间的关系,考查了代入法求曲线方程,考查了存在性问题的求解方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•上海)已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A,B是下底面圆周上两个不同的点,BC是母线,如图,若直线OA与BC所成角的大小为
π
6
,则
l
r
=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=log2
2x4-x
 图象对称中心的坐标;
(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)-b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知a,b,c∈R,“b2-4ac<0”是“函数f(x)=ax2+bx+c的图象恒在x轴上方”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知向量
a
=(1,k)
b
=(9,k-6)
.若
a
b
,则实数 k=
-
3
4
-
3
4

查看答案和解析>>

同步练习册答案