精英家教网 > 高中数学 > 题目详情

根据我国发布的《环境空气质量指数技术规定》(试行),共分为六级:为优,为良,为轻度污染,为中度污染,均为重度污染,及以上为严重污染.某市2013年11月份天的的频率分布直方图如图所示:

⑴该市11月份环境空气质量优或良的共有多少天?
⑵若采用分层抽样方法从天中抽取天进行市民户外晨练人数调查,则中度污染被抽到的天数共有多少天?
⑶空气质量指数低于时市民适宜户外晨练,若市民王先生决定某天早晨进行户外晨练,则他当天适宜户外晨练的概率是多少?

(1)6,(2)3,(3)0.6

解析试题分析:(1)频率分布直方图中矩形面积表示频率,而頻数等于频率乘以总数. 11月份环境空气质量优或良为对应的两个矩形,其频率为頻数为(2)分层抽样方法,实际就是按各层比例抽样,中度污染的频率确定所抽的人数.因为为中度污染,所以中度污染的频率为所以抽取天中有(3)空气质量指数低于时市民适宜户外晨练,因此求适宜户外晨练的概率,就是求空气质量指数低于对应的频率,就是求求空气质量指数低于对应的矩形面积之和,为.解决此类问题的关键要明确纵坐标的单位为频率与组距的比值,所以对应小矩形的面积等于频率.
试题解析:(1)由题意知该市11月份环境空气质量优或良的共有
天;                                             4分
⑵中度污染被抽到的天数共有天;                             9分
⑶设“市民王先生当天适宜户外晨练”为事件
.                       14分
考点:频率分布直方图,概率,分层抽样.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.

(1)求第二小组的频率,并补全这个频率分布直方图;
(2)求这两个班参赛的学生人数是多少;
(3)这两个班参赛学生的成绩的中位数应落在第几小组内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近年来,我国许多地方出现雾霾天气,影响了人们的出行、工作与健康.其形成与 有关. 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 日均值越小,空气质量越好.为加强生态文明建设,我国国家环保部于2012年2月29日,发布了《环境空气质量标准》见下表:

日均值k(微克)
空气质量等级

一级

二级

超标

某环保部门为了了解甲、乙两市的空气质量状况,在某月中分别随机抽取了甲、乙两市6天的日均值作为样本,样本数据茎叶图如右图所示(十位为茎,个位为叶).
(1)求甲、乙两市日均值的样本平均数,据此判断该月中哪个市的空气质量较好;
(2)若从甲市这6天的样本数据中随机抽取两天的数据,求恰有一天空气质量等级为一级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

空气质量已成为城市居住环境的一项重要指标,空气质量的好坏由空气质量指数确定。空气质量指数越高,代表空气污染越严重:

空气质量指数
0~35
35~75
75~115
115~150
150~250
≥250
空气质量类别


轻度污染
中度污染
重度污染
严重污染
经过对某市空气质量指数进行一个月(30天)监测,获得数据后得到条形图统计图如图:

(1)估计某市一个月内空气受到污染的概率(规定:空气质量指数大于或等于75,空气受到污染);
(2)在空气质量类别为“良”、“轻度污染”、“中度污染”的监测数据中用分层抽样方法抽取一个容量为6的样本,若在这6数据中任取2个数据,求这2个数据所对应的空气质量类别不都是轻度污染的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:

 
关注NBA
不关注NBA
合计
男生
 
6
 
女生
10
 
 
合计
 
 
48
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为.
(1)请将上面的表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA与性别有关?说明你的理由.
(2)现记不关注NBA的6名男生中某两人为a,b,关注NBA的10名女生中某3人为c,d,e,从这5人中选取2人进行调查,求:至少有一人不关注NBA的被选取的概率。
下面的临界值表,供参考
P(K2≥k)
0.10
0.05
0.010
0.005
K
2.706
3.841
60635
7.879
(参考公式:)其中n=a+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:

态度

 

应该取消
应该保留
无所谓
在校学生
2100人
120人
y人
社会人士
600人
x人
z人
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

根据空气质量指数(为整数)的不同,可将空气质量分级如下表:

(数值)






空气质量级别
一级
二级
三级
四级
五级
六级
空气质量类别


轻度污染
中度污染
重度污染
严重污染
空气质量类别颜色
绿色
黄色
橙色
红色
紫色
褐红色
某市日—日,对空气质量指数进行监测,获得数据后得到如图的条形图

(1)估计该城市本月(按天计)空气质量类别为中度污染的概率;
(2)在上述个监测数据中任取个,设为空气质量类别颜色为紫色的天数,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这l6人的数学成绩编成茎叶图,如图所示.

(I)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为l22分,试推算这个污损的数据是多少?
(Ⅱ)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:

年份(x)
1
2
3
4
5
人数(y)
3
5
8
11
13
(1)从这5年中随机抽取两年,求考入大学的人数至少有年多于10人的概率.
(2)根据这年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值。
参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

同步练习册答案