精英家教网 > 高中数学 > 题目详情

据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:

态度

 

应该取消
应该保留
无所谓
在校学生
2100人
120人
y人
社会人士
600人
x人
z人
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.

(I)应在“无所谓”态度抽取720×=72人;
(Ⅱ)ξ的分布列为:

ξ
1
2
3
P



Eξ=2.

解析试题分析:(I)在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05,由此可求得x,进而可求得 持“无所谓”态度的人数. 分层抽样,实质上就是按比例抽样,所以根据比例式即可得在“无所谓”态度中抽取的人数.(Ⅱ)由(I)知持“应该保留”态度的一共有180人,根据比例式即可得在所抽取的6人中,在校学生为=4人,社会人士为=2人.现将这6人平均分为两组,注意这两组编了号的,故共有种分法(若是所分两组不编号,则有种分法).因为在校学生共有4人,故ξ=1,2,3,由古典概型的概率公式得:P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,从而可得ξ的分布列及均值.
试题解析:(I)∵ 抽到持“应该保留”态度的人的概率为0.05,
=0.05,解得x=60.                   2分
∴持“无所谓”态度的人数共有3600-2100-120-600-60=720.     4分
∴应在“无所谓”态度抽取720×=72人.            6分
(Ⅱ)由(I)知持“应该保留”态度的一共有180人,
∴在所抽取的6人中,在校学生为=4人,社会人士为=2人,
于是第一组在校学生人数ξ=1,2,3,                 8分
P(ξ=1)=,P(ξ=2)=,P(ξ=3)=
即ξ的分布列为:

ξ
1
2
3
P



10分
∴Eξ=1×+2×+3×=2.                   12分
考点:1、分层抽样;2、离散型随机变量的分布列及数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为缓解某路段交通压力,计划将该路段实施“交通限行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:

年龄
(岁)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频 数
5
10
15
10
5
5
赞成
人数
4
8
9
6
4
3
(1)作出被调查人员年龄的频率分布直方图.
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖,.求a和b至少有一人上台抽奖的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其
范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.

(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?
(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

根据我国发布的《环境空气质量指数技术规定》(试行),共分为六级:为优,为良,为轻度污染,为中度污染,均为重度污染,及以上为严重污染.某市2013年11月份天的的频率分布直方图如图所示:

⑴该市11月份环境空气质量优或良的共有多少天?
⑵若采用分层抽样方法从天中抽取天进行市民户外晨练人数调查,则中度污染被抽到的天数共有多少天?
⑶空气质量指数低于时市民适宜户外晨练,若市民王先生决定某天早晨进行户外晨练,则他当天适宜户外晨练的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:

 
喜欢
不喜欢[来源:学科网ZXXK]
合计
大于40岁
20
5
25
20岁至40岁
10
20
30
合计
30
25
55
(Ⅰ)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(Ⅱ)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示.

(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求的值;
(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;
(Ⅲ)当时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作。

(I)求男生成绩的中位数及女生成绩的平均值;
(II)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如图所示:

(1)估计该校男生的人数;
(2)估计该校学生身高在170~185cm的概率;
(3)从样本中身高在180~190cm的男生中任选2人,求至少有1人身高在185~190cm的概率.

查看答案和解析>>

同步练习册答案