精英家教网 > 高中数学 > 题目详情
(本小题满分12分)

如图,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,点E、M分别为A1B、C1C的中点,过点A1,B,M三点的平面A1BMN交C1D1于点N.
(Ⅰ)求证:EM∥平面A1B1C1D1
(Ⅱ)求二面角B—A1N—B1的正切值.
(Ⅱ)
(Ⅰ)证明:取A1B1的中点F,连EF,C1F  ∵E为A1B中点  ∴EFBB1    又∵M为CC1中点∴EF C1M∴四边形EFC1M为平行四边形 ∴EM∥FC1 

而EM 平面A1B1C1D1 . FC1平面A1B1C1D1 .
∴EM∥平面A1B1C1D1………………6分  
(Ⅱ)由⑴EM∥平面A1B1C1D1 
EM平面A1BMN,平面A1BMN∩平面A1B1C1D1=A1N  
∴A1N// EM// FC1  ∴N为C1D1中点,过B1作B1H⊥A1N于H,连BH,根据三垂线定理  BH⊥A1N
∠BHB1即为二面角B—A1N—B1的平面角……8分
设AA1=a,则AB=2a, ∵A1B1C1D1为正方形               
∴A1H=   又∵△A1B1H∽△NA1D1
∴B1H=,在Rt△BB1H中,
tan∠BHB1=即二面角B—A1N—B1的正切值为……12分 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是平行四边形,侧面,点在侧棱上,
.
(1)求证:平面平面
(2)若所成角为,二面角的大小为,求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

四边形的菱形,绕AC将该菱形折成二面角,记异面直线所成角为与平面所成角为,当最大时,二面角等于(        )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分)如图,五面体.底面是正三角形,四边形是矩形二面角为直二面角.
(1)上运动,当在何处时,有∥平面,并且说明理由;
(2)当∥平面时,求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示的正方体中,M、N是棱BC、CD的中点,则异面直线AD1与MN所成的角为(  )度.
A.30B.45C.60D.90

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥S-ABC中,若底面ABC是边长等于2
3
的正三角形,SA与底面ABC垂直,SA=6,点M,N分别为SB,AC的中点,则异面直线MN与BC所成角的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直三棱柱ABC-A1B1C1中,CA=CC1=2CB,∠ACB=90°,则直线BC1与直线AB1夹角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正四面体A-BCD(空间四边形的四条边长及两对角线的长都相等)中,E,F分别是棱AD,BC的中点,则EF和AC所成的角的大小是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在四面体中,已知棱的长为,其余各棱长都为,则二面角  的余弦值为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案