精英家教网 > 高中数学 > 题目详情
沿海地区某农村在2010年底共有人口1480人,全年工农业生产总值为3180万,从2011年起计划10年内该村的总产值每年增加60万元,人口每年净增a人,设从2011年起的第x年(2011年为第一年)该村人均产值为y万元.
(Ⅰ)写出y与x之间的函数关系式;
(Ⅱ)为使该村的人均产值10年内每年都有增长,那么该村每年人口的净增不能超过多少人?
【答案】分析:(1)据人均产值=总产值人数,列出y与x的关系
(2)是利用单调递增函数的定义,设出有大小的两自变量得到其函数值的大小,列出不等式求出a的范围.
解答:(Ⅰ)解:依题意得第x年该村的工农业生产总值为(3180+60x)万元,
而该村第x年的人口总数为(1480+ax)人,
∴y=(1≤x≤10).(6分)
(Ⅱ)为使该村的人均产值年年都有增长,则在1≤x≤10内,y=f(x)为增函数.
设1≤x1<x2≤10,则
f(x1)-f(x2)=-=
=
∵1≤x1<x2≤10,a>0,
∴由f(x1)<f(x2),得88800-3180a>0.
∴a<≈27.9.又∵a∈N*,∴a=27.
所以该村每年人口的净增不能超过27人.
点评:本小题主要考查函数知识、函数的单调性,考查数学建模,运用所学知识解决实际问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

沿海地区某农村在2010年底共有人口1480人,全年工农业生产总值为3180万,从2011年起计划10年内该村的总产值每年增加60万元,人口每年净增a人,设从2011年起的第x年(2011年为第一年)该村人均产值为y万元.
(Ⅰ)写出y与x之间的函数关系式;
(Ⅱ)为使该村的人均产值10年内每年都有增长,那么该村每年人口的净增不能超过多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

沿海地区某农村在2010年底共有人口1480人,全年工农业生产总值为3180万,从2011年起计划10年内该村的总产值每年增加60万元,人口每年净增a人,设从2011年起的第x年(2011年为第一年)该村人均产值为y万元.
(Ⅰ)写出y与x之间的函数关系式;
(Ⅱ)为使该村的人均产值10年内每年都有增长,那么该村每年人口的净增不能超过多少人?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

沿海地区某农村在2010年底共有人口1480人,全年工农业生产总值为3180万,从2011年起计划10年内该村的总产值每年增加60万元,人口每年净增a人,设从2011年起的第x年(2011年为第一年)该村人均产值为y万元.
(Ⅰ)写出y与x之间的函数关系式;
(Ⅱ)为使该村的人均产值10年内每年都有增长,那么该村每年人口的净增不能超过多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)沿海地区某农村在2010年底共有人口1480人,全年工农业生产总值为3180万,从2011年起计划10年内该村的总产值每年增加60万元,人口每年净增a人,设从2011年起的第x年(2011年为第一年)该村人均产值为y万元.

(Ⅰ)写出yx之间的函数关系式;

(Ⅱ)为使该村的人均产值10年内每年都有增长,那么该村每年人口的净增不能超过多少人?

查看答案和解析>>

同步练习册答案