精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是边长为的正方形,侧棱底面,且侧棱的长是,点分别是的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

【答案】)证明见解析;(.

【解析】试题分析:()连结,通过勾股定理计算可知,由三线合一得出平面;()根据中位线定理计算得出是边长为的正三角形,以为棱锥的底面,则为棱锥的高,代入棱锥的体积公式计算.

试题解析:()证明: 四边形是边长为的正方形, 的中点,

侧棱底面,

是等腰三角形, 的中点, .

同理 是等腰三角形, 的中点,

平面

)侧棱底面,

由()知: 平面,是三棱锥到平面的距离

分别是的中点, ,

四边形是边长为的正方形, 的中点

三角形是等边三角形

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),
[240,260),[260,280),[280,300)分组的频率分布直方图如图.

(1)求直方图中x的值;
(2)在月平均用电量为,[220,240),[240,260),[260,280)的三用户中,用分层抽样的方法抽取10居民,则月平均用电量在[220,240)的用户中应抽取多少户?
(3)求月平均用电量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一个周期内的图象如图所示,则函数的解析式为 . 直线y= 与函数y=f(x)(x∈R)图象的所有交点的坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的外接圆半径R= ,角A,B,C的对边分别是a,b,c,且 =
(1)求角B和边长b;
(2)求SABC的最大值及取得最大值时的a,c的值,并判断此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步雾霾天气现象增多,大气污染危害加重,大气污染可引起心悸,呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.

(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;

(2)已知在患心肺疾病的10位女性中,有3位又患胃病,现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列、数学期望及方差,下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的首项为8,Sn是其前n项的和,某同学经计算得S2=20,S3=36,S4=65,后来该同学发现了其中一个数算错了,则该数为(
A.S1
B.S2
C.S3
D.S4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的前n项和为Sn , 已知S1 , S3 , S2成等差数列,
(1)求{an}的公比q;
(2)求a1﹣a3=3,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果右边程序执行后输出的结果是132,那么在程序until后面的“条件”应为( )

A.i > 11
B.i ≥11
C.i ≤11
D.i<11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线过抛物线焦点,且与抛物线交于 两点,以线段为直径的圆与抛物线准线的位置关系是( )

A. 相离 B. 相交 C. 相切 D. 不确定

查看答案和解析>>

同步练习册答案