精英家教网 > 高中数学 > 题目详情
若抛物线上一点到焦点的距离为2,则点的坐标是        .
,则由题意知抛物线的准线方程为,又由抛物线的定义知:点到该抛物线的准线的距离为2,故,代入抛物线方程得,所以点的坐标为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题13分)已知抛物线的焦点轴上,抛物线上一点到准线的距离是,过点的直线与抛物线交于两点,过两点分别作抛物线的切线,这两条切线的交点为
(1)求抛物线的标准方程;
(2)求的值;
(3)求证:的等比中项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知线段AB过轴上一点,斜率为,两端点A,B到轴距离之差为
(1)求以O为顶点,轴为对称轴,且过A,B两点的抛物线方程;
(2)设Q为抛物线准线上任意一点,过Q作抛物线的两条切线,切点分别为M,N,求证:直线MN过一定点;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求过点的直线,使它与抛物线仅有一个交点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为抛物线上一动点,F为抛物线的焦点,定点,则的最小值为(      )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的准线方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点的切线方程为为常数).
(I)求抛物线方程;
(II)斜率为的直线PA与抛物线的另一交点为A,斜率为的直线PB与抛物线的另一交点为B(A、B两点不同),且满足,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当时,若P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且交抛物线于MN两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

顶点在原点,焦点在x轴上,且截直线2x-y+1=0所得弦长为,求抛物线方程.

查看答案和解析>>

同步练习册答案