精英家教网 > 高中数学 > 题目详情
如果x>0,y>0,且x+y=1,求z=(x+
1
x
)(y+
1
y
)的最小值.
考点:基本不等式在最值问题中的应用
专题:综合题,解三角形
分析:利用x+y=1,化简z=(x+
1
x
)(y+
1
y
),再利用基本不等式,即可求出z=(x+
1
x
)(y+
1
y
)的最小值.
解答: 解:z=(x+
1
x
)(y+
1
y
)=xy+
x2+y2
xy
+
1
xy
=xy+
2
xy
-2,
∵x>0,y>0,且x+y=1,∴xy≤
1
4

令t=xy,则z=t+
2
t
-2,函数在(0,
1
4
]上单调递减,
∴t=
1
4
时,z=(x+
1
x
)(y+
1
y
)的最小值为
25
4
点评:本题考查基本不等式在最值问题中的应用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=xsin(x2)的图象大致为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,复数z满足iz=1+i,则
.
z
=(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内曲线C上的动点到定点(
2
,0
)和直线x=2
2
的比等于
2
2

(Ⅰ)求该曲线C的方程;
(Ⅱ)设动点P满足
OP
=
OM
+2
ON
,其中M,N是曲线C上的点,直线OM与ON的斜率之积为-
1
2
,问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值?若存在,求F1,F2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
m2+12
+
y2
m2-4
=1的焦距是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

幂函数f(x)=x-2m+3(m∈N)为奇函数,且在(0,+∞)上是增函数,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=-2,则
sinα-4cosα
5sinα+2cosα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的一条内角平分线CD所在直线的方程为2x+y-1=0两个顶点为A(1,-6),B(2,-
1
2
).
(1)求第三个顶点C的坐标
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(x,2,0),
b
=(3,2-x,x2),且
a
b
的夹角为钝角,则x的取值范围是
 

查看答案和解析>>

同步练习册答案