精英家教网 > 高中数学 > 题目详情
3.已知椭圆C与双曲线$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{2}$=1有公共焦点,且离心率e=$\frac{3}{5}$,
(1)求椭圆的标准方程;
(2)已知点P是椭圆C上的一动点,过点P作x轴的垂线段PD,D为垂足,当点P在椭圆上运动时,线段PD的中点M的轨迹是什么?

分析 (1)由题意,c=3,a=5,b=4,即可求椭圆的标准方程;
(2)确定P、M坐标之间的关系,利用点P在椭圆上,即可求得线段PD中点M的轨迹E的方程;

解答 解:(1)由题意,c=3,a=5,∴b=4,
∴椭圆的标准方程$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1;
(2)设PD中点M(x,y),P(x′,y′),依题意x=x′,y=$\frac{y′}{2}$
∴x′=x,y′=2y
又点P在$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1上,∴$\frac{x{′}^{2}}{25}+\frac{y{′}^{2}}{4}$=1,即$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{4}$=1,
∴线段PD的中点M轨迹方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{4}$=1.

点评 本题考查轨迹方程的求法,考查学生的计算能力,正确运用代入法是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$|{\vec a}|=1$且$|{2\vec a-\vec b}|=2$,求$|{\vec b}|$0或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$sin(x+$\frac{π}{4}$),x∈R,若f(θ)+f(-θ)=$\frac{3}{2}$,θ∈(0,$\frac{π}{2}$),求tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2,四个顶点围成的四边形面积为4$\sqrt{2}$.
(1)求椭圆的标准方程;
(2)设O为坐标原点,过点P(0,1)的动直线与椭圆交于A,B两点,求证:$\overrightarrow{OA}$•$\overrightarrow{OB}$+$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在区间(10,20)内的所有实数中,随机取一个实数a,则这个实数a<13的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{7}$C.$\frac{3}{10}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={x|-1≤x<3},B={x|2x-4≥x-2},求A∩B;A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=loga(x-1)+2(a>0且a≠1)恒过定点(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.${∫}_{-1}^{1}$(x2tanx+x3+1)dx的值为(  )
A.0B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y的值如表,若x,y呈线性相关且回归方程为y=bx+3.5,则b=(  )
x234
y546
A.-2B.2C.-0.5D.0.5

查看答案和解析>>

同步练习册答案