精英家教网 > 高中数学 > 题目详情

设f(x)=4x2-4(a+1)x+3a+3(a∈R),若f(x)=0有两个均小于2的不同的实数根,则此时关于x的不等式(a+1)x2-ax+a-1<0是否对一切实数x都成立?请说明理由.

解:由题意得
得2或a<-1;
若(a+1)x2-ax+a-1<0对任意实数x都成立,则有:
①若a+1=0,即a=-1,则不等式化为x+2>0不合题意
②若a+1≠0,则有

综上可知,只有在时,(a+1)x2-ax+a-1<0才对任意实数x都成立.
∴这时(a+1)x2-ax+a-1<0不对任意实数x都成立
分析:先利用对称轴小于2,以及方程有两个不等实数根,结合二次函数的性质先求a的范围,再根据a的范围对不等式的恒成立问题,就转化二次函数解决即可.
点评:本题考查函数与方程之间的关系,根的分布,以及函数恒成立问题,解决的关键是转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=4x2-4(a+1)x+3a+3(a∈R),若f(x)=0有两个均小于2的不同的实数根,则此时关于x的不等式(a+1)x2-ax+a-1<0是否对一切实数x都成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=4x2-1,g(x)=-2x+1
(1)若关于x的方程f(2x)=2g(x)+m有负实数根,求m的取值范围;
(2)若F(x)=af(x)+bg(x)(a,b都为常数,且a>0)
①证明:当0≤x≤1时,F(x)的最大值是|2a-b|+a;
②求证:当0≤x≤1时,F(x)+|2a-b|+a≥0.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市海曙区效实中学高一(上)期中数学试卷(3-11班)(解析版) 题型:解答题

设f(x)=4x2-1,g(x)=-2x+1
(1)若关于x的方程f(2x)=2g(x)+m有负实数根,求m的取值范围;
(2)若F(x)=af(x)+bg(x)(a,b都为常数,且a>0)
①证明:当0≤x≤1时,F(x)的最大值是|2a-b|+a;
②求证:当0≤x≤1时,F(x)+|2a-b|+a≥0.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市海曙区效实中学高一(上)期中数学试卷(3-11班)(解析版) 题型:解答题

设f(x)=4x2-1,g(x)=-2x+1
(1)若关于x的方程f(2x)=2g(x)+m有负实数根,求m的取值范围;
(2)若F(x)=af(x)+bg(x)(a,b都为常数,且a>0)
①证明:当0≤x≤1时,F(x)的最大值是|2a-b|+a;
②求证:当0≤x≤1时,F(x)+|2a-b|+a≥0.

查看答案和解析>>

同步练习册答案