精英家教网 > 高中数学 > 题目详情
已知向量a=(2,sinx),b=(cos2x,2cosx),则函数f(x)=a·b的最小正周期是
[     ]
A.
B.π
C.2π
D.4π
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知向量
a
=(x,y-4),
b
=(kx,y+4)
(k∈R),
a
b
,动点M(x,y)的轨迹为T.
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当k=1时,已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部
的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?
若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinωx,-cosωx),
b
=(
3
cosωx,cosωx)(ω>0),函数f(x)=
a
b
+
1
2
,且函数f(x)=
3
sinωxcosωx-cos2ωx+
1
2
的图象中任意两相邻对称轴间的距离为π.
(1)求ω的值;
(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,f(C)=
1
2
,且c=2
19
,△ABC的面积S=2
3
,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosx,sinx)
b
=(cosx,2
3
cosx)
,函数f(x)=
a
b
+1

(1)求函数f(x)的单调递增区间.
(2)在△ABC中,a,b,c分别是角A、B、C的对边,a=1且f(A)=3,求△ABC面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cos
x
2
,1),
b
=(cos
π+x
2
,3cosx),设函数f(x)=(
a
-
b
)•
a

(1)若?x∈R,f(x)≤a(a∈R),求a的取值范围;
(2)在△ABC中,角A、B、C所对的边分别为a,b,c,且f(A)=4,a=
10
,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx,sinωx),
b
=(cosωx,
3
cosωx),其中(0<ω<2).函数f(x)=
a
b
-
1
2
,其图象的一条对称轴为x=
π
6

(1)求函数f(x)的表达式及单调递增区间;
(2)在△ABC中,a、b、c分别为角A、B、C的对边,S为其面积,若f(
A
2
)
=1,b=l,S△ABC=
3
,求BC边上的中线AD的长.

查看答案和解析>>

同步练习册答案