精英家教网 > 高中数学 > 题目详情
记函数f(x)=lg(
5-x
x+1
-2)
的定义域为A,g(x)=
x-a-1
2a-x
(a<1)
的定义域为B,
(Ⅰ)若a=-
1
2
,求A∩B;
(Ⅱ)若B⊆A,求实数a的取值范围.
分析:(1)根据两函数的解析式有意义求出集合A和集合B,把a=-
1
2
代入后化简集合B,然后直接取交集;
(2)由集合B是集合A的子集,且集合B非空,根据端点值列不等式求解实数a的取值范围.
解答:解:(1)要使f(x)有意义,则
5-x
x+1
-2>0
,解得-1<x<1,
所以A={x|-1<x<1},
要使g(x)有意义,则
x-a-1
2a-x
≥0
,因为a<1,解得:2a<x≤a+1,
所以B={x|2a<x≤a+1},
当a=-
1
2
时,B={x|-1<x≤
1
2
},
所以A∩B={x|-1<x≤
1
2
};
(2)由B⊆A得:
2a≥-1
a+1<1
解得:-
1
2
≤a<0

所以使B⊆A的实数a的取值范围[-
1
2
,0).
点评:本题主要考查集合的交集和子集概念,属于基础题.要正确处理两集合的包含关系,必须对子集的概念有深刻的理解,善于抓住端点值的关系,正确列出相应等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记函数f(x)=
1-2x
的定义域为集合A,函数g(x)=lg[(x-a+1)(x-a-1)]的定义域为集合B.
(Ⅰ)求集合A;
(Ⅱ)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=
2-
x+7
x+2
的定义域为A,g(x)=lg[(2x-a)(ax+1)]的定义域为B.
(1)求A;  
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•上海模拟)记函数f(x)=
2-
x+7
x+2
的定义域为A,g(x)=lg[(2x-b)(ax+1)](b>0,a∈R)的定义域为B,
(1)求A:
(2)若A⊆B,求a、b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=lg(2x-3)的定义域为集合M,函数g(x)=的定义域为集合N.求集合M,N; 集合M∩N.M∪N.

查看答案和解析>>

同步练习册答案