精英家教网 > 高中数学 > 题目详情
(2005•上海模拟)记函数f(x)=
2-
x+7
x+2
的定义域为A,g(x)=lg[(2x-b)(ax+1)](b>0,a∈R)的定义域为B,
(1)求A:
(2)若A⊆B,求a、b的取值范围.
分析:(1)由题设中的函数解析式,求函数的定义域A,可令2-
x+7
x+2
≥0
,解出此不等式的解集即得A;
(2)由g(x)的解析式知(2x-b)(ax+1)>0由(1)及A⊆B可得
0<
b
2
<3
-2≤-
1
a
<0
从中解出a、b的取值范围
解答:解:(1)由题意A={x|2-
x+7
x+2
≥0}={x|
x-3
x+2
≥0}=(-∞,-2)∪[3,+∞)

(2)(2x-b)(ax+1)>0,由A⊆B,得a>0,
由此,由不等式(2x-b)(ax+1)>0得x>
b
2
x<-
1
a

B=(-∞,-
1
a
)∪(
b
2
,+∞)

比较A,B两个集合可得
0<
b
2
<3
-2≤-
1
a
<0
解得
a≥
1
2
0<b<6

综上知,a、b的取值范围是a≥
1
2
,0<b<6
点评:本题考查求对数函数的定义域及集合中的参数取值问题,解题的关键是理解定义域的求法及两个集合包含关系,根据集合的包含关系转化出参数所满足的不等式是解题的难点
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2005•上海模拟)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线上标注的数字表示某信息经过该段网线所需的时间(单位:毫秒).信息由结点A传输到结点B所需的最短时间为
4.8
4.8
毫秒.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•上海模拟)不等式(1+x)(1-|x|)>0的解为
(-∞,-1)∪(-1,1)
(-∞,-1)∪(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•上海模拟)设数列{an}、{bn}均为等差数列,且公差均不为0,
lim
n→∞
an
bn
=3
,则
lim
n→∞
b1+b2+…+bn
n•a3n
=
1
18
1
18

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•上海模拟)一只口袋里装有大小相同的6个小球,分别涂上红色、黄色、绿色的球各2个,如果任意取出3个小球,那么恰有2个小球同颜色的概率是
3
5
3
5

查看答案和解析>>

同步练习册答案