精英家教网 > 高中数学 > 题目详情
已知△ABC的一个顶点A(-1,-4),∠B、∠C的内角平分线所在直线的方程分别为l1:y+1=0,l2:x+y+1=0.
(Ⅰ)求BC边上的高所在直线的方程;
(Ⅱ)求△ABC的内切圆方程.
分析:(I)利用轴对称的知识建立关系式,解出点A关于直线l1、l2对称点A'、A″的坐标,再由直线方程的两点式列式,化简得到A'A″的方程x+2y-3=0,即为边BC所在直线的方程.再求出与BC垂直的直线的斜率,利用点斜式列式并化简,可得BC边上的高所在的直线的方程;
(II)根据题意,联解l1、l2的方程得到l1、l2的交点坐标,即为△ABC的内切圆的圆心.再由点到直线的距离公式求出圆心到BC边的距离,即为内切圆半径r,由此即可得到△ABC的内切圆方程.
解答:解:(I)设点A(-1,-4)关于直线y+1=0的对称点为A'(x1,y1),
可得x1=-1,
1
2
(-4+y1)=-1,解得y1=2×(-1)-(-4)=2,
∴A'坐标为(-1,2),
再设点A(-1,-4)关于l2:x+y+1=0的对称点为A″(x2,y2),
可得
y2+4
x2+1
•(-1)=-1
x2-1
2
+
y2-4
2
+1=0

解之得x2=3,y2=0,
∴A″坐标(3,0),
∵∠B、∠C的内角平分线所在直线的方程分别为l1:y+1=0,l2:x+y+1=0,
∴点A'与点A″都在直线BC上,
根据直线方程的两点式,得直线A'A″的方程为
y-2
0-2
=
x+1
3+1

化简得x+2y-3=0,即为边BC所在直线的方程,
∵直线BC的斜率k=-
1
2

∴BC边上的高所在的直线的斜率为k'=
-1
k
=2,
∵A点坐标为(-1,-4),
∴BC边上的高所在的直线的方程为y+4=2(x+1),
化简得2x-y-2=0;
( II)根据题意,可得△ABC的内角平分线l1与l2的交点即为△ABC的内切圆的圆心,
联解
y+1=0
x+y+1=0
,得
x=0
y=-1
,可得内切圆的圆心为(0,-1),
又∵圆心到直线BC的距离为半径,
∴内切圆的半径r=
|-2-3|
5
=
5

因此,△ABC的内切圆方程为x2+(y+1)2=5.
点评:本题给出三角形满足的条件,求直线BC的方程与BC边上高所在直线方程,并求三角形的内切圆方程.着重考查了直线的基本量与基本形式、直线的位置关系、圆的标准方程和直线与圆的位置关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的一个顶点A(-1,-4),∠B、∠C的平分线所在直线的方程分别为l1:y+1=0,l2:x+y+1=0,求边BC所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的一个顶点A(4,-1),其内角∠B、∠C的平分线方程分别是y=x-1和x=1,求BC边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的一个顶点A(4,-1)和它的两条角平分线的方程分别是x-1=0和x-y-1=0,求BC边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修二3.2直线的方程练习卷(二) 题型:解答题

如图, 已知△ABC的一个顶点A(4,-1), 其内角B,C的平分线方程分别是y=x-1和x=1, 求BC边所在直线的方程

 

查看答案和解析>>

同步练习册答案