【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间
(单位:小时)与当天投篮命中率
之间的关系:
时间 | 1 | 2 | 3 | 4 | 5 |
命中率 | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
小李这5天的平均投篮命中率;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.
附:线性回归方程
中系数计算公式
,
,
【答案】预测小李该月6号打6小时篮球的投篮命中率为![]()
【解析】试题分析:(1)先求出小李这
天的平均投篮命中率,从而可得样本中心点的坐标,利用
求出
,样本中心点的坐标代入回归方程可求得
,进而求出线性回归方程,先再令
,即可预测小李该月
号打
小时篮球的投篮命中率.
试题解析:小李这5天的平均投篮命中率
,
,
, ![]()
∴线性回归方程
,则当
时, ![]()
∴预测小李该月6号打6小时篮球的投篮命中率为
.
【方法点晴】本题主要考查散点图的画法和线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算
的值;③计算回归系数
;④写出回归直线方程为
;(2) 回归直线过样本点中心
是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.
科目:高中数学 来源: 题型:
【题目】已知
为定义在R上的奇函数,当
时,
为二次函数,且满足
,
在
上的两个零点为
和
.
(1)求函数
在R上的解析式;
(2)作出
的图象,并根据图象讨论关于
的方程![]()
根的个数.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如右表.
组 号 | 年龄 | 访谈 人数 | 愿意 使用 |
1 | [18,28) | 4 | 4 |
2 | [28,38) | 9 | 9 |
3 | [38,48) | 16 | 15 |
4 | [48,58) | 15 | 12 |
5 | [58,68) | 6 | 2 |
(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
年龄不低于48岁的人数 | 年龄低于48岁的人数 | 合计 | |
愿意使用的人数 | |||
不愿意使用的人数 | |||
合计 |
参考公式:
,其中:n=a+b+c+d.
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设
为两个同高的几何体,
的体积不相等,
在等高处的截面积不恒相等,根据祖暅原理可知,
是
的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;
②设有一个回归方程
,变量x增加一个单位时,y平均增加3个单位;
③线性回归方程
必经过点
;
④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )
A. 0
B. 1
C. 2
D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:f(x)=2/(x-m)在区间(1,+∞)上是减函数;;命题q:2x-1+2m>0对任意x∈R恒成立.若(
p)∧q为真,求实数m的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com