精英家教网 > 高中数学 > 题目详情
已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则(  )
A.f(2a)<f(3)<f(log2a)B.f(3)<f(log2a)<f(2a
C.f(log2a)<f(3)<f(2aD.f(log2a)<f(2a)<f(3)
∵函数f(x)对定义域R内的任意x都有f(x)=f(4-x),
∴f(x)关于直线x=2对称;
又当x≠2时其导函数f′(x)满足xf′(x)>2f′(x)?f′(x)(x-2)>0,
∴当x>2时,f′(x)>0,f(x)在(2,+∞)上的单调递增;
同理可得,当x<2时,f(x)在(-∞,2)单调递减;
∵2<a<4,
∴1<log2a<2,
∴2<4-log2a<3,又4<2a<16,f(log2a)=f(4-log2a),f(x)在(2,+∞)上的单调递增;
∴f(log2a)<f(3)<f(2a).
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a-3)x+a2-3a(a为常数).
(1)如果对任意x∈[1,2],f(x)>a2恒成立,求实数a的取值范围;
(2)设实数p,q,r满足:p,q,r中的某一个数恰好等于a,且另两个恰为方程f(x)=0的两实根,判断①p+q+r,②p2+q2+r2,③p3+q3+r3是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数g(a),并求g(a)的最小值;
(3)对于(2)中的g(a),设H(a)=-
16
[g(a)-27]
,数列{an}满足an+1=H(an)(n∈N*),且a1∈(0,1),试判断an+1与an的大小,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)已知函数f(x)=eax-x,其中a≠0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax.
(I)若对一切x>0,f(x)≤1恒成立,求a的取值范围;
(II)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x)2)(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使f′(x0)=k成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a
(1)如果对任意x∈(1,2],f'(x)>a2恒成立,求实数a的取值范围;
(2)设实数f(x)的两个极值点分别为x1x2判断①x1+x2+a②x12+x22+a2③x13+x23+a3是否为定值?若是定值请求出;若不是定值,请把不是定值的表示为函数g(a)并求出g(a)的最小值;
(3)对于(2)中的g(a),设H(x)=
1
9
[g(x)-27],m,n∈(0,1)且m≠n,试比较|H(m)-H(n)|与|em-en|(e为自然对数的底)的大小,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b(a,b为实常数)的零点与函数g(x)=2x2+4x-30的零点相同,数列{an},{bn}定义为:a1=
1
2
,2an+1=f(an)+15,bn=
1
2+an
(n∈N*).
(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与数列{bn}的前n项积分别记为Sn,Tn证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有2[1-(
4
5
n]≤Sn<2.

查看答案和解析>>

同步练习册答案