精英家教网 > 高中数学 > 题目详情
14.甲与其四位朋友各有一辆私家车,车牌尾数分别是0,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案总数为64.

分析 根据奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行,分两步,其中第二步需要分两类,问题得以解决.

解答 解:5日至9日,分为5,6,7,8,9,有3天奇数日,2天偶数日,
第一步安排奇数日出行,每天都有2种选择,共有23=8种,
第二步安排偶数日出行分两类,第一类,先选1天安排甲的车,另外一天安排其它车,有2×2=4种,
第二类,不安排甲的车,每天都有2种选择,共有22=4种,共计4+4=8,
根据分步计数原理,不同的用车方案种数共有8×8=64,
故答案为64.

点评 本题考查了分步和分类计数原理,关键是掌握如何分步和分类,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.实数x大于$\sqrt{10}$,用不等式表示为(  )
A.$x<\sqrt{10}$B.$x≤\sqrt{10}$C.$x>\sqrt{10}$D.$x≥\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的焦点是F1、F2,且点P是双曲线上的一点,若∠F1PF2=60°,求三角形F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{{\begin{array}{l}{({a+1})x+1,x<1}\\{{x^2}-2ax+2,x≥1}\end{array}}$是R上的增函数,则实数a的取值范围是(  )
A.-1<a<1B.-1<a≤1C.$-1<a<\frac{1}{3}$D.$-1<a≤\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四面体ABCD的四个顶点都在球O的球面上,AB=AD=CD=2,BD=2$\sqrt{2}$,BD⊥CD,平面ABD⊥平面BCD,则球O的体积为(  )
A.4$\sqrt{3}$πB.$\frac{\sqrt{3}}{2}$πC.$\frac{8\sqrt{2}}{3}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.i是虚数单位,复数$\frac{7-i}{3+i}$=2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设集合A=[0,$\frac{1}{2}$),B=[$\frac{1}{2}$,1],函数f(x)=$\left\{{\begin{array}{l}{x+\frac{1}{2},x∈A}\\{2(1-x),x∈B}\end{array}}$,若f(f(x0))∈A,则x0的取值范围是$(\frac{1}{4},\frac{5}{8})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线l1:2x-ay-1=0与直线l2:x+2y=0垂直,则a=1.

查看答案和解析>>

同步练习册答案